Development of User-friendly Bayesian Predictive Platform for Blood Boron-10 Pharmacokinetics following Intravenous Infusion of [¹⁰B] L-4-BORONOPHENYALANINE

Woo Hyoung Kim¹, Seung Chan Choi², Jungyu Yi^{3,4}, Sang Min Lee², Kyung Ran Mun², Hyeong-Seok Lim² ¹Division of Pharmaceuticals and Clinical Development, DawonMedax Co., Ltd, Seoul, South Korea

²Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, Ulsan University College of Medicine, Pungnap-2-dong, Seoul, Republic of Korea.

³Division of Medical Device, DawonMedax Co, Ltd, Seoul, South korea.

⁴Department of Nuclear Engineering, Hanyang University, Seoul, South Korea.

Introduction/Objectives

Data processing

Import PK Dataset

- Making NONMEM dataset using R shiny
- Input patient's specific information (total dose, rate and also boron concentration acquired from blood samples for its estimation

Individual Dataset for EBE

1st concentr

11 00 2nd concent 27.999

18,999 2st PK samp

Subject ID	ID
20221021	2022102
20221021	2022102
Infustion Strat Time: Hour/Min/Sec	2022102
09 00 00	2022102
Dose in mg/kg	2022102
500	2022102
information (min)	2022102
infusion duration (min)	2022102
180	2022102
number of doses	2022102
1	2022102
Dosing Interval in min	2022102
0	2022102
	2022102
Time Range in min	2022102
480	2022102
1st PK sampling Actual Time [Hour/Min/Sec]:	2022102

R shiny

500 0.1329080276448

- > Boron neutron capture therapy (BNCT) allows high-precision radiotherapy against tumor using boron-10 (¹⁰B) with tumor-localizing characteristics and strong tendency to capture thermal neutrons.
- \succ It is important to accurately predict the blood ¹⁰B concentration during the neutron irradiation to deliver the prescribed dose as planned.
- > This study was performed to develop user-friendly Bayesian predictive platform for pharmacokinetics (PK) of ¹⁰B which is clinically applicable in BNCT.

6 7267267267267 7.2072072072072

Methods

- > Population PK model for ¹⁰B was constructed using blood ¹⁰B concentration over time data following intravenous infusion of boronophenylalanine (BPA) which were digitized from previous study results, which was used as a prior distribution model for the Bayesian prediction.
- \succ The predictive model was implemented in NONMEM[®] 7.4 (ICON Development Solutions, USA), and NONMEM was executed using R (version 4.03) with userfriendly interface provided by Shiny package.
- > Simulation and sensitivity analyses were conducted to evaluate the predictive performance of the platform and identify optimal PK sampling time for blood ¹⁰B.

Results (PK model)

 \succ Elimination rate constant from central compartment value (k₁₀) was estimated as 0.006(1/min). Volume of distribution of central compartment(V₁) was estimated as 0.252(L).

during irradiation)

00 00	LOLLIGLI		-	-	-		
ration in B-10 ug/g (PPM)	20221021	8.16816816816817				1	
	20221021	8.64864864864865				1	
	20221021	9.12912912912913				1	
oling Actual Time [Hour/Min/Sec]:	20221021	9.60960960960961				1	
00 00	20221021	10.0900900900901				1	
tration in B-10 ug/g (PPM)	20221021	10.5705705705706				1	
	20221021	11.0510510510511				1	
	20221021	11.5315315315315				1	

44144144144144

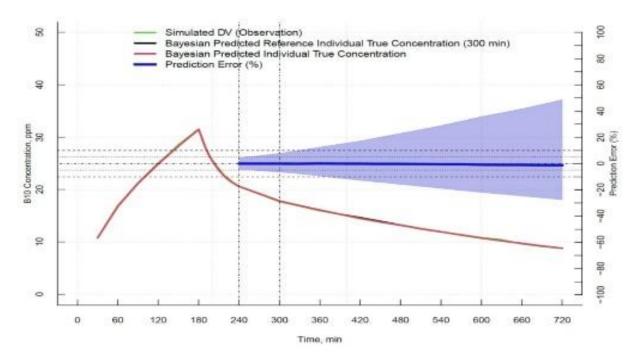
2.4024024024024024 2.8828828828828

3.3633633633633 3.8438438438438

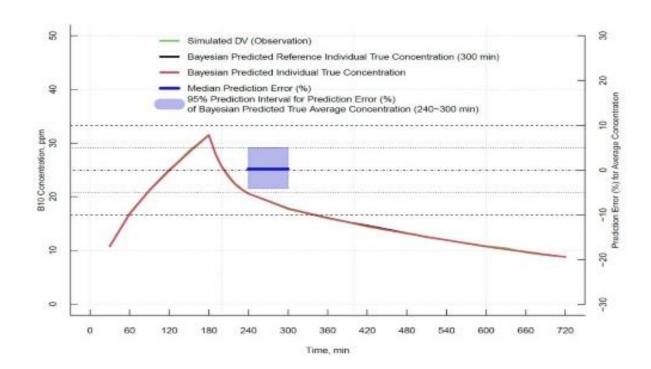
4.3243243243243

4 804804804804 5.2852852852852

5.765765765765


Bayesian Estimation

Bayesian Estimation


- Using previous built population PK model for BPA and using patient's blood BPA concentration dataset.
- Bayesian prediction comparison between full dataset (irradiation vs Pre-Irradiation set)
- Figure show real time estimation accuracy and its error.

NONMEM

MAP Bayesian Prediction versus Reference Prediction (300 min) (9 PK sampling at 60, 120, 180, 190, 200, 210, 220, 230, 240 min)

MAP Bayesian Predicted versus Reference Predicted (300 min) Average Blood Concentration 240~300 min) (9 PK sampling at 60, 120, 180, 190, 200, 210, 220, 230, 240 min)

Conclusion

Output

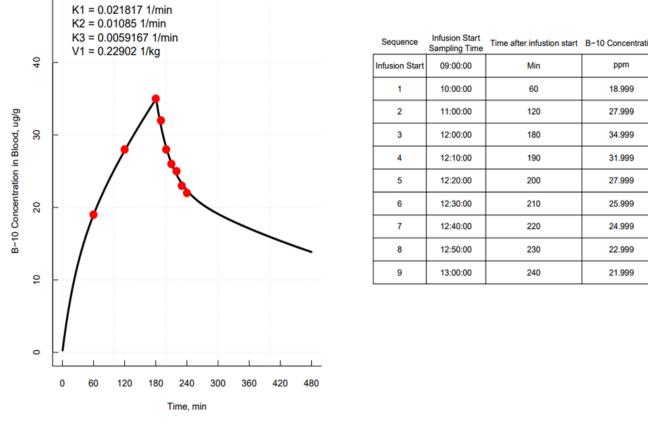
 \succ This predicted platform has the potential to play a crucial role in clinical trials aiming at evaluating the effect of BNCT, as it assess the treatment effect in a user-friendly and reliable way. By enabling a more precise prediction of the therapeutic effect, the platform can help clinicians tailor treatment plans to individual patients, ultimately improving the overall quality of care in BNCT.

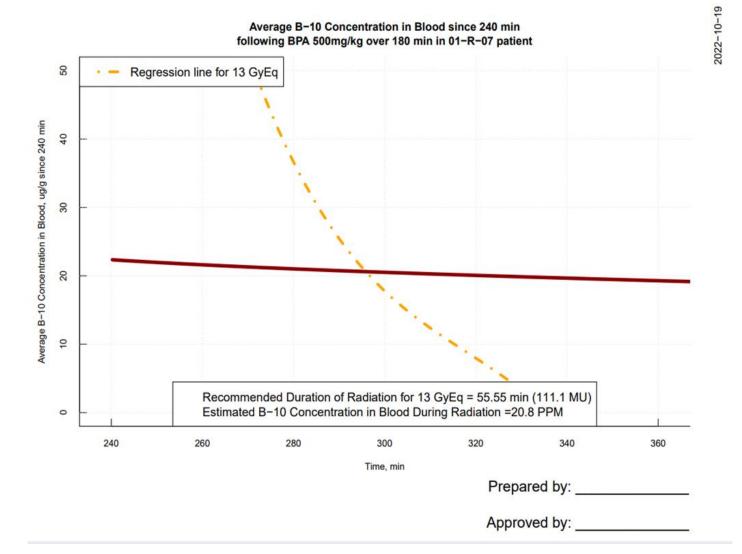
References

[1] Palmer, M. R., Goorley, J. T., Kiger, W. S., Busse, P. M., Riley, K. J., Harling, O. K., & Zamenhof, R. G. (2002). Treatment planning and dosimetry for the Harvard-MIT Phase I clinical trial of cranial neutron capture therapy. International Journal of Radiation Oncology*Biology*Physics, 53(5), 1361–1379.

[2] Chanana, Capala, Chadha, et al. Boron neutron capture therapy for glioblastoma multiforme: interim

results from the phase I/II dose-escalation studies. Neurosurgery. 1999;44(6):1182-1192; discussion


Configure the Draft Report in an Editable Format(PDF)


- Numerical values reported in the main text are automatically updated according to the various input datasets.
- Figure and table captions are • automatically generated.

Finalize the Report

The final report is completed with minimal edits

BPA 500 mg/kg over 180 minutes (01-R-07)

