

## **Population pharmacokinetic analysis of tacrolimus TDM data in stable kidney transplant patients**

Golubović B (1), Vučićević K (1), Jovanović M (1), Radivojević D (2), Kovačević Vezmar S (1), Prostran M (3), Miljković B (1)

1 Department of Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Belgrade, Serbia

2 Nephrology Clinic, Clinical Centre of Serbia, University of Belgrade, Serbia

3 Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia

| Objectives                                                                                                                                                                                              | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| The aim of the study was to explore pharmacokinetic<br>characteristics of tacrolimus and potential factors that<br>significantly contribute to its variability in stable kidney<br>transplant patients. | <ul> <li>TDM data for period about one year after transplantation</li> <li>C<sub>trough</sub> in whole blood were assessed using CMIA method (ARCHITECT, Abbot Laboratories)</li> <li>NONMEM<sup>®</sup> (version 7.2.0), PSN<sup>®</sup> (version 3.5.3)</li> <li>Graphic presentation - Xpose<sup>®</sup>, R<sup>®</sup>, Pirana<sup>®</sup></li> <li>FOCEI; ADVAN2 TRANS2</li> <li>Internal validation: bootstrap -1000 samples, Numerical predictive check (NPC) - 1000 samples</li> </ul> |  |  |

## **Results**

Table 1. Patients' and immunosuppressive therapy characteristics

- interindividual variability exponential error model
- residual variability proportional error model

| Number (%)<br>/<br>Average ± Sd | Range                                                                                                                                                                                                                                                                    |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26                              |                                                                                                                                                                                                                                                                          |
| 19                              |                                                                                                                                                                                                                                                                          |
| 30                              |                                                                                                                                                                                                                                                                          |
| 15                              |                                                                                                                                                                                                                                                                          |
| 389.14 ± 33.75                  | 328 – 470                                                                                                                                                                                                                                                                |
| 40.83 ± 10.22                   | 20 – 61                                                                                                                                                                                                                                                                  |
| 69.78 ± 12.94                   | 45 – 95                                                                                                                                                                                                                                                                  |
| $0.40 \pm 0.06$                 | 0.28 – 0.58                                                                                                                                                                                                                                                              |
| 71.76 ± 3.70                    | 63 – 80                                                                                                                                                                                                                                                                  |
| 5.39 ± 1.15                     | 2.9 – 9.17                                                                                                                                                                                                                                                               |
| 1.96 ± 1.01                     | 0.14 – 7.19                                                                                                                                                                                                                                                              |
| 19.68 ± 6.96                    | 9 – 41                                                                                                                                                                                                                                                                   |
| 23.84 ± 12.61                   | 2 – 73                                                                                                                                                                                                                                                                   |
| 4.52 ± 2.26                     | 1 – 11                                                                                                                                                                                                                                                                   |
| 6.69 ± 2.63                     | 2.6 – 19.6                                                                                                                                                                                                                                                               |
| 134.26 ± 270.05                 | 750 – 2000                                                                                                                                                                                                                                                               |
| 8.49 ± 1.99                     | 5 – 12.5                                                                                                                                                                                                                                                                 |
|                                 | Number (%)<br>/<br>Average ± Sd<br>26<br>19<br>30<br>15<br>389.14 ± 33.75<br>40.83 ± 10.22<br>69.78 ± 12.94<br>0.40 ± 0.06<br>71.76 ± 3.70<br>5.39 ± 1.15<br>1.96 ± 1.01<br>19.68 ± 6.96<br>23.84 ± 12.61<br>4.52 ± 2.26<br>6.69 ± 2.63<br>34.26 ± 270.05<br>8.49 ± 1.99 |

bootstrap – 999 successful runs

Table 2. Inclusion of covariate during model building process

| Model                      | OFV     |        |
|----------------------------|---------|--------|
| Base                       | 344.212 |        |
| Forward inclusion of DTAC  | 319.929 | 24.283 |
| Forward inclusion of WT    | 305.93  | 13.999 |
| Full                       | 305.93  |        |
| Backward exclusion of DTAC | 340.362 | 34.432 |
| Backward exclusion of WT   | 319.929 | 13.999 |
| FINAL                      | 305.93  |        |

Table 3. Final model parameters of real and bootstrap simulated data

| Parameter                | FINAL MODEL |                  | BOOTSTRAPING |                  |
|--------------------------|-------------|------------------|--------------|------------------|
|                          | Estimate    | 95% CI           | Median       | 95% CI           |
| θ <sub>CL</sub> a (l/h)  | 4.27        | 2.853 - 5.687    | 4.27         | 3.033 – 6.082    |
| $\theta_{\text{DTAC}}$ b | 1.51        | 1.364 - 1.656    | 1.52         | 1.38 – 1.73      |
| $\Theta_{WT}^{b}$        | 1.82        | 1.355 - 2.285    | 1.80         | 1.33 – 2.38      |
| $\omega^2_{CL}$ c        | 0.0202      | 0.00685 – 0.0335 | 0.0177       | 0.00595 - 0.0325 |
| Wp d                     | 0.302       | 0.224 - 0.380    | 0.298        | 0.224 - 0.382    |

a-typical value of tacrolimus clearance;

b-influential factors for covariates (DTAC – daily tacrolimus dose, WT – body weight);

c-variance for clearance;

d-residual variability (Wp – proportional error).







Figure 2. NPC of the final model. Circles present lower and upper limits of prediction intervals (%) observed in the data. Dashed lines indicate 95% CIs of the lower and Figure 1. Population (PRED) and individual model predicted (IPRED) concentration versus upper limits of simulation-based prediction intervals (%).

## **Conclusions**

Tacrolimus CL/F was found to increase with WT and DTAC. Relationship between CL/F and DTAC may be due to so-called TDM effect. Other analyzed covariates did not influence tacrolimus CL/F significantly.

References

observed concentration (DV) (ng/ml)

1. Golubović B, Vučićević K, Radivojević D, Kovačević Vezmar S, Prostran M, Miljković B. Total plasma protein effect on tacrolimus elimination in kidney transplant patients – population pharmacokinetic approach. Eur J Pharm Sci. 2014; 52: 34–40.

2. Ahn, J.E., Birnbaum, A.K., Brundage, R.C., 2005. Inherent correlation between dose and clearance in therapeutic drug monitoring settings: possible misinterpretation in population pharmacokinetic analyses. J Pharmacokinet Pharmacodyn 32, 703-718.