

Background and Objective

As an increasing number of pharmacometrics (PM) models have been developed based on data in Korea, which leads to the needs of archiving and further using developed models. In addition, a growing demand for prediction pharmacokinetic (PK) parameters in an easy way leads to motivation of developing an easy-to-use platform where one can easily estimate PK parameters in diverse methods. As those of trends, Korean Pharmacometrics Model Library (KPML) has been developed by collaboration of Ministry of Food and Drug Safety (MFDS) and Korean Society for Clinical Pharmacology and Therapeutics (KSCPT) as a web repository and platform to store the developed PM models in Korea and provides PM platform for estimate PK parameters using various methods such as non-compartment (NCA), compartment model (CA), allometric scaling (AS), or *in vitro in vivo* extrapolation (IVVIE).

	Methods
KPML	 Collect and store model code and dataset pharmacometrics models in Korea (including of PK model, PKPD model, PBPK-PD model)
PM platform	 NCA: Develop based on some R packages, including bear (v2.8.7) [1], NonCompart (v0.4.5), and ncar (v0.4.2) [2]
	CA: Develop using nlmixr package in R [3]
	 AS: Develop in R to extrapolate PK parameters from animal to human using single species scaling or simple allometric scaling equations
	 IVIVE: Develop in R to estimate in vivo hepatic clearance (CL_h) from in vitro CL_h using three different methods (well-stirred, parallel and dispersion method)
PM training	 Provide materials related to PM works (lecture files, hands-on, including code files and data files, and result files)
Guidelines	 Update PM guideline from FDA, EMA, MFDS, ICH and other sources

Available link website: http://repository.kscpt.org/

Acknowledgement

This research was supported by a grant (18182MFDS405 and 19182MFDS427) from Ministry of Food and Drug Safety in 2018 and 2019, respectively.

Overview of Korean Pharmacometrics Modeling Library and web-based pharmacometrics platform Quyen Thi Tran (1), Chung Hee Lee (2), Min-Gul Kim (3), Minji Kim (3), Hansung Kim (4), Jung-Woo Chae (1), Hwi-yeol Yun (1)

- (1) College of Pharmacy, Chungnam National University, Republic of Korea

- (4) Carpediem, Dongtan-si, Kyunggi-do, Republic of Korea

Results

• KPML provide developed models where one can refer when developing models for drugs

PML ~	Models						Detail				
NONMEM								→One compar	tment PK mode	of Vancomycin	
PK model				Search:		Q			Details		
> 1-compartment model	Model Name	Author Name	Drug	Target Disease	Modeling Dataset	Data Description	Model ID	ltem Model name	One compartment PK model of Van	comvcin	
> 2-compartment model	One compartmen		Vancomycin	MRSA infection	human	Pediatric	114	Author name	Hyun-moon Back None		
· · ·	model of Vancom		vancomycin	MINSA INTECTION	numan	patients	114	Reference			
> Multi-compartment model	One compartmen	· · · ·	Alcohol	None	human	Healthy	115	Drug	Vancomycin		
	model of Alcohol					Human		Target Disease	MRSA infection		
> Other model	One compartmen model of metform		Metformin	Type II diabetes	human	Healthy Human	116	Objective	Development of vancomycin pharmacokinetic model in pediat		
PK-PD model <	One compartmen	nt PK Hyun-moon	Hyun-moon Cyclosporin Immunosuprressant hum	human	uman Pediatric	219	Description	One compartment PK model with I.V. infusion in pediatric patients			
PBPK-PD model <	model of cyclospe		cyclosporm			patients	210	Matching model and Reference	true		
Other model <	One compartmen model of Phenob		Phenobarbital	Seizure	human	Pediatric patients	221	Modification with Respect to publish model	true		
Phoenix <	· •							Modeling Dataset	human		
Others <			_					Data Description	Pediatric patients		
/ Platform <	Table.	Number of c	urrent ava	ailable mode	els in K	PML		files	run20.lst run20.mod	Code, dataset	
∧ Training	Тур	e of model	PK model	PK-PD mod	lel PBF	PK-PD mod	el		Vanco_PK_data_LNDV_Final.csv	and result file	
ideline <	Numb	er of models	15	4		5					

PM platform provide environment where one can upload data and calculate PK parameters

		_
	Project Welcome X	
KPML <	Import data Non-Compartmental Analysis/Compartmental Modeling	g
PM Platform	Analysis	
NCA <	Graph Available Graphs	
Compartmental modeling < Allometric scaling <	Information Individual Time vs. Concentration Time vs. Concentration Spaghetti plot of Time vs. Concentration Time vs. Concentration	
IVIVE PM Training < Guideline <		
L IVIVE Microsome Hepatocyte Hepatocyte NFO References NVE	In vitro In vivo Extrapolation vmax, km Half-life NCA Number of species = 3 Number of species = 3 NCA NCA NCA	
iraining < eline <	Well-stirred PM Training Chint PM Training Chint Input rat information Km (umol/L) $CL_h = \frac{Q_h \times \frac{CL_{int}}{f_{milc}(or f_{hepa})} \times f_p}{Q_h + \frac{CL_{int}}{f_{milc}(or f_{hepa})} \times f_p} \times f_p$ Guideline Guideline Guideline Guideline Guideline If you don't have unbound fraction (fu), please add 1 for both unbound fractions	
	Fp fu in human plasma (0 <= fu <= 1)	
	$CL_h = Q_h \times (1 - e^{\frac{-CL_{int}}{Q_h}})$	
	Qh (mL/min/kg)DispersionPrediction PK parameters in humanPlot20.7 $CL_h = Q_h \times R_B \times [1 - \frac{4a}{(1-a)^2 \times \left(e^{\frac{a-1}{2D_N} - e^{-\frac{a+1}{2D_N}}\right)}]$ Show	
	Hepatocyte number (cells/g Liver)	
	Liver weight (g Liver/kg Body weight)	
	25.7 Undo	

(2) Clinical Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea (3) Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea

• PM training provide materials where one use it to learn and practice

KPML	<	Models						
PM Platform	<							
PM Training	~				Se	arch:	٩	
	~	Model Name	Author Name	Drug	Target Disease	Modeling Dataset	Data Description	Model ID
Introductory course	Ť	Building Dataset & Writing Control Stream	In-hwan Baek	•		human		179
Lecture	~	Structural Model Buildling and Evaluation	Eun Kyoung Chung	•		human		180
> Lecture file		Covariate model building-1	Jung-woo Chae	•		human		181
> Hands on file		Covariate model buildling-2	Hyun-moon Back	•		human		182
> Solution file		Model-based Simulation for Pediatric Dose optimization	Nayoung Han	•		human		183
Advanced course	<	NLME_Population PK models	-			human		184
		NLME_Covariate effects	-			human		185
Guideline	<	NLME_Categorical response	-	•		human		186
		NLME_Allometric scaling	-	•		human		187
Guideline	<		-		•	-	•	

information

(PML	<	Models						
M Platform	<				Search:		٩	
M Training	<							
Guideline	~	Model Name	Author Name	Drug	Target Disease	Modeling Dataset	Data Description	Model ID
Regulatory Guideline	~	Exposure-Response Relationships - Study design, Data analysis, and Regulatory Applications	FDA			human		210
FDA	~	Population Pharmacokinetics	FDA			human		211
> Guideline		Physiologically Based Pharmacokinetic Analyses - Format and Content	FDA			human		212
EMA	~	Integrated Summary of Effectiveness	FDA			human		213
> Guideline								
MFDS	<							
ІСН	<							
Others	~							
> Guideline								
SOP	<							

KPML with updated PM models is a precious repository which can be referred for developing new models or used in clinical practice. In addition, KPML with potential platforms would be an easy tool to predict precisely and reliably PK parameters. It can be widely applied to quickly predict and reduce time and unnecessary effort on prediction PK parameters.

[1]"The data analysis tool for average bioequivalence (ABE) and bioavailability (BA)." Avail able: http://pkpd.kmu.edu.tw/bear/. [2]Kim et al. Translational and Clinical Pharmacology. 2018, 26(1), 10-15. [3]Schoemaker et al. CPT Pharmacometrics Systems Pharmacology. 2019, 8(12), 923–930.

• Guidelines provide update guidelines where one can easily find needed

Conclusion

Reference