
Fig. 2: Compartmental representation of
the structural model.
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 Models:

The NLME model for glucagon kinetics consists of a

structural model describing the individual kinetics of the

hormone in plasma, and a stochastic model describing the

variability of the structural model parameters among the

subject population.

The structural model is a delayed two-compartment

model. The model is reported in Fig. 2, where 𝑖𝑟 (pmol/min) is

the infusion rate in input, 𝑦 𝑡 are the output measurements,

𝐶𝐿 (L/min) is the plasma clearance, 𝑄 (L/min) is the

intercompartmental clearance, 𝑉𝐶 and 𝑉𝑃 (L) are the central and the peripheral volumes of

distribution respectively, and 𝑡0 (min) is a zero-order delay from the start of infusion that

accounts for the time lag introduced by the glucagon pump.

The stochastic model assumes a log-normal distribution for all the kinetic parameters:

𝜓𝑖,𝑗 = 𝜃𝑖exp 𝜂𝑖,𝑗
where 𝜓𝑖,𝑗 is the 𝑖𝑡ℎ individual parameter of the 𝑗𝑡ℎ subject, 𝜃𝑖 is the 𝑖𝑡ℎ population parameter,

the so-called fixed effects, and 𝜂𝑖,𝑗 are Gaussian random variables, 𝜼~𝑁 𝟎,𝛀 , the so-called

random effects.

Finally, the model for the measurement error was assumed identical to [1]:

𝑦 𝑡 = ො𝑦 𝑡 + 𝑎 + 𝑏 ො𝑦 𝑡 ⋅ 𝜖 𝑡

where 𝜖(𝑡) is a zero-mean and unit-variance Gaussian random variable, and the error

parameters are fixed to 𝑎=0.07 pmol/L and 𝑏=0.049.

In this work, five different models were tested. They all share the same structural and

error model described above, but differ in the stochastic model, in which different

combinations of correlations between random effects were considered.

Identification strategy:

Models were identified using Monolix [2], which implements the stochastic approximation

of expectation maximization in combination with a Markov Chain Monte Carlo method to

estimate the maximum likelihood of the NLME model parameters. Prior information from [1]

was employed for the estimation of the time delay, 𝑡0. Only data from 120 min onward were

used for model identification. The tested models were assessed in terms of residual

distribution and relative standard error (RSE) of the estimates, and finally compared

using a corrected Bayesian information criterion (BICc).

 Model comparison: 

The results of model validation and comparison are reported in Tab. 1. Residual distribution

was satisfactory for every tested model. Model 5 was rejected because one parameter was

estimated with poor precision (ρVc,Vp with RSE=58.7%). Among the remaining models, Model

2 was the one scoring the lowest BICc and, therefore, it was selected as the best model for

describing glucagon kinetics.

 Subjects:

Fifty-three healthy subjects (17 M and 36 F, age = 54±13 y, weight = 81±15 kg).

 Protocol:

Volunteers underwent a constant infusion of somatostatin (60 ng/kg/min) to inhibit

endogenous glucagon and insulin secretion, a variable infusion of insulin to replace normal

plasma insulin levels and a constant infusion of glucagon (65 ng/kg/min), starting 2 hours

after somatostatin infusion (Fig. 1, panel A). Plasma glucagon were measured using a two-

site ELISA (Mercodia, Winston Salem, NC) in accordance with the manufacturer’s instructions

(Fig. 1, panel B). Demographic (age and sex) and anthropometric data (body weight, height,

lean body mass, body mass index and body surface area) were also collected.

Fig. 3: VPC obtained with Model 2. Ninety-percent prediction intervals of the 10th (blue lower area), 50th (red central area), and
90th (blue upper area) percentiles are compared with the 10th (upper blue solid line), 50th (red central solid line), and 90th (lower
blue solid line) empirical percentiles.

Impaired glucagon suppression and defective insulin secretion contribute to the onset of

diabetes. However, compared to insulin, glucagon is understudied, in part because of the

absence of a kinetic model necessary to estimate its secretion. Recently, Laurenti and

colleagues filled this gap and derived population parameters of glucagon kinetics using a

standard-two-stage approach [1]. The best model describing glucagon kinetic data was a

single-compartment one. However, a two-compartment model performed satisfactorily in a

nonnegligible percentage of the analyzed subjects (39 out of 51).

The aim of this work was to assess whether a two-compartment model for glucagon

kinetics can be identified in a population framework using nonlinear mixed effects

(NLME) modeling.

In this work, a two-compartment model describing glucagon kinetics in plasma

has been developed in a NLME framework. The model assumes that kinetics parameters are

log-normally distributed, and clearance and volume of distribution are correlated.

The model can be employed for the estimation of glucagon secretion via deconvolution

as currently done for insulin, as well as it can be incorporated in diabetes simulator

platforms to test therapies employing exogenous glucagon administration.

Future work includes adding a covariate model or allometric scaling to the presented

NLME model.

#
Correlations between 

random effects

Number of model 

parameters
#RSE>50% MEAN RSE [%] BICc

1 - 10 0 15.37 3823.52

2 ρCL,Vc 11 0 13.91 3814.01

3 ρCL,Vp 11 0 13.82 3830.85

4 ρVc,Vp 11 0 11.37 3840.39

5 ρCL,Vc; ρCL,Vp; ρVc,Vp 13 1 (ρVc,Vp) 17.82 3816.78

The selected model: 

The equations of the selected stochastic model are reported below:

𝜓:

𝐶𝐿 = 𝐶𝐿𝑝𝑜𝑝 exp 𝜂𝐶𝐿

𝑉𝐶 = 𝑉𝐶
𝑝𝑜𝑝

exp 𝜂𝑉𝐶
𝑄 = 𝑄𝑝𝑜𝑝 exp 𝜂𝑄

𝑉𝑃 = 𝑉𝑃
𝑝𝑜𝑝

exp 𝜂𝑉𝑃
𝑡0 = 𝑡0

𝑝𝑜𝑝
exp 𝜂𝑡0

with: Ω =

𝜔𝐶𝐿
2 𝜔𝐶𝐿𝜔𝑉𝐶𝜌𝐶𝐿,𝑉𝐶 0 0 0

𝜔𝐶𝐿𝜔𝑉𝐶𝜌𝐶𝐿,𝑉𝐶 𝜔𝑉𝐶
2 0 0 0

0 0 𝜔𝑄
2 0 0

0 0 0 𝜔𝑉𝑃
2 0

0 0 0 0 𝜔𝑡0
2

Parameter estimates are reported in Tab. 2 together with their precision. All population
parameters were within physiological ranges. Finally, an overview of the model’s ability to
describe data can be seen in the visual predictive check (VPC, Fig. 3).

Tab. 1: Summary of the tested stochastic models. From left to right: model number; additional parameters ρ introducing a
correlation between the random effects of model parameters; total number of estimated parameters; number of parameters
estimated with RSE>50%; mean RSE; value of the BICc. The selected model is model number 2 (highlighted in bold).

Fig. 1: Scheme of the experimental protocol and collected data. Panel A: filled bars represent the duration of the infusion of
somatostatin (orange), insulin (green) and glucagon (blue). Panel B: mean (solid black line) ± standard deviation (blue area) of the
plasma glucagon concentration. Dots indicates sampling times. The black dashed line indicates below limit of quantification.

Fixed Effects Value RSE
SD of random 

effects
Value RSE

CLpop 1.25 L/min 3% ωCL 0.22 10%

Vcpop 5.11 L 7% ωVc 0.39 12%

Qpop 0.49 L/min 10% ωQ 0.45 17%

Vppop 5.23 L 42% ωVp 2.44 15%

t0
pop 10.7min 7% ωt0 0.47 10%

Correlations Value RSE

ρCL,Vc 0.68 20%

Tab. 2: Parameter estimates, and their precision expressed as RSE.
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