Pharmacokinetic Modeling of Fentanyl Citrate and Norfentanyl in **Calves Using a Nonlinear Mixed-Effects Approach**

Joe Smith^{2,3*}, <u>Claude Magnard^{1*}</u>, Yeon-Jung Seo ^{2,4}, Pauline Traynard¹, Jonathan P. Mochel²

(1) Simulations Plus, Lixoft division, Antony, France, (2) Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, (3) Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, (4) Department of Statistics, University of Pittsburgh, PA (*) co-lead authors.

SHSimulationsPlus Cognigen DILIsym Services Lixoft

CONTACT INFORMATION: claude.magnard@simulations-plus.com

GOAL

Fentanyl citrate is a potent opioid agonist commonly used as an analgesic in animal studies, providing several hours of pain relief during surgical and other medical procedures [1].

Characterize the kinetics of fentanyl citrate and norfentanyl using a nonlinear mixed-effects (NLME) modeling approach

Use this model to compare competing dosing regimens that achieve therapeutic steady-state concentrations of fentanyl and norfentanyl, while minimizing systemic toxicity in calves.

WORKFLOW 16 calves Data Single iv dose, either 2.5 µg/kg or 5.0 µg/kg Parent (fentanyl) and metabolite (norfentanyl) measured for 24h after dosing Joint model capturing parent and metabolite data Population modeling and inter-individual variability in Monolix Selection of best structural and statistical model Predict the response to continuous infusion and Compare dosing intermittent boluses, with and without loading dose

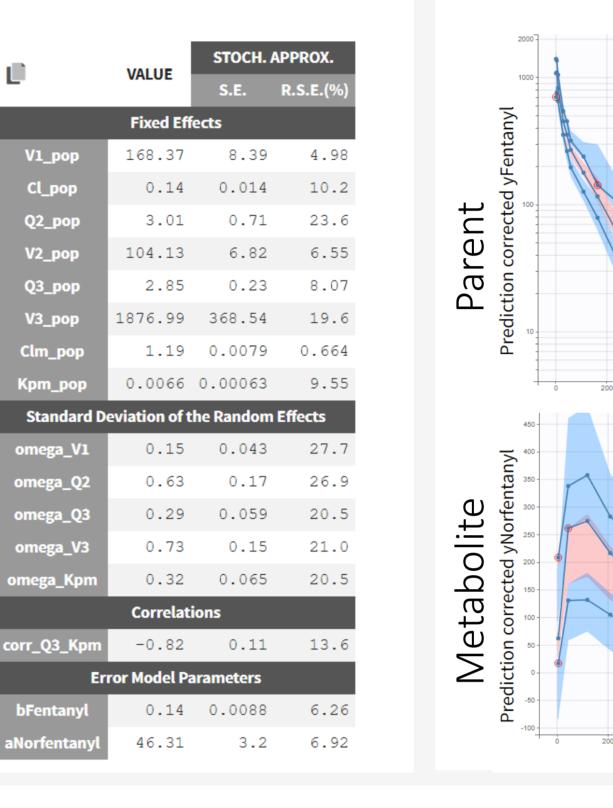
IMPORT your estimated model in one click

Post-process simulations to find the best regimen combining safety and efficacy

PARENT-METABOLITE MODEL ESTIMATED IN MONOLIX

Model selection in Sycomore

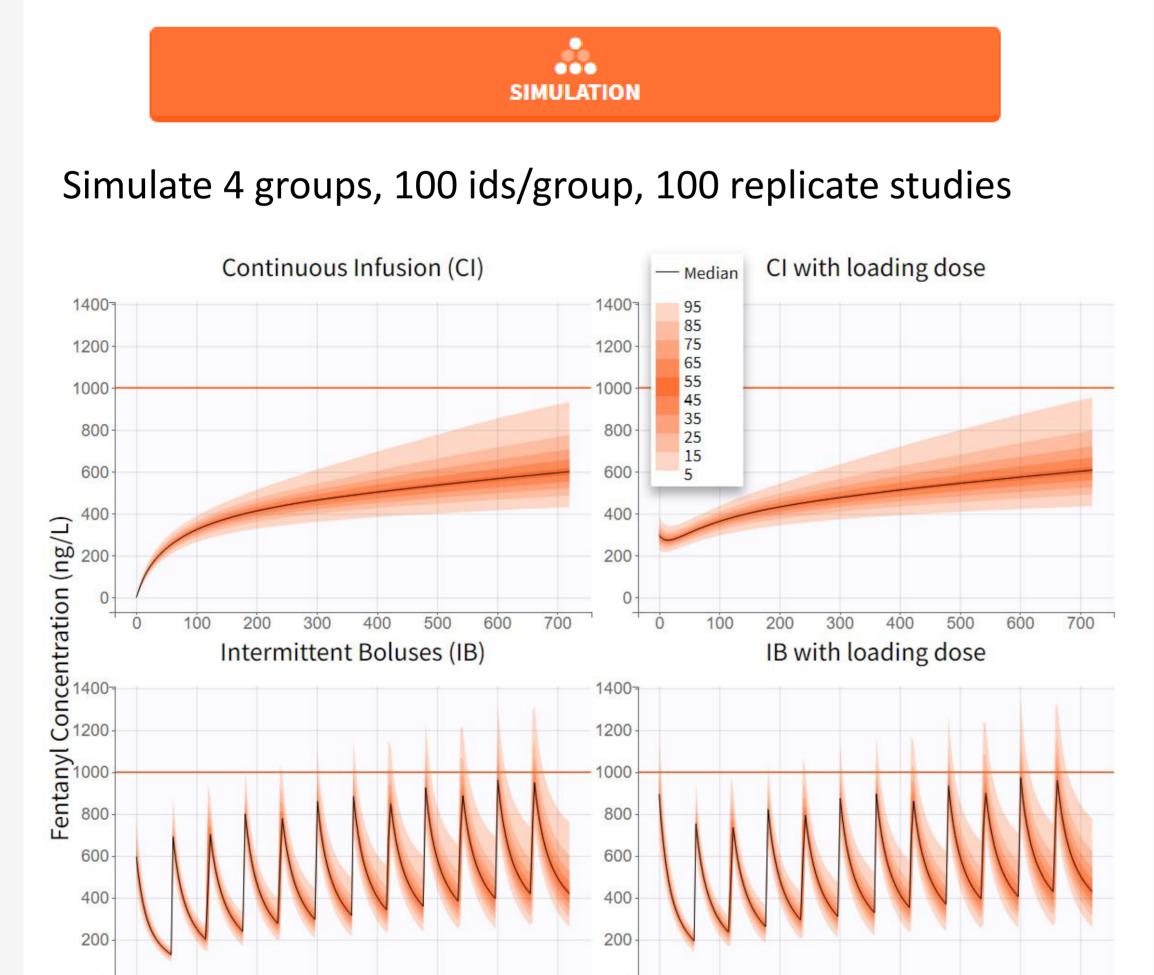
Project name All None	🚸 Rating 🕸 🛛	lCc (IS)≁	Structural model	Observation model	Individual model 🤳
r02_parent_3cpt	***	2157.77	lib: bolus_3cpt_ClV1 Q2V2Q3V3.txt	yFentanyl: comb1	CI V1 Q2 V2 Q3 V3
r03_parent_met	***	3232.47	bolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: comb1 yNorfentanyl: comb1	V1 CL Q2 V2 Q3 V3 Clr Kpm
r04_bis_wo_sim_annealin	g ***	3223.31	bolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: prop yNorfentanyl: const	V1 CL Q2 V2 Q3 V3 Cln Kpm
r04_parent_met_errormod	lel ★★★	3222.22	bolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: prop yNorfentanyl: const	V1 CL Q2 V2 Q3 V3 Cln Kpm
r05_parent_met_noREV2Clr	nCl ★★★	3214.48	bolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: prop yNorfentanyl: const	V1 Cl Q2 V2 Q3 V3 Cln Kpm
r06_parent_met_corrQ3Kp	m ** *	3208.38	bolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: prop yNorfentanyl: const	V1 Cl Q2 V2 Q3 V3 Cln Kpm
r07_parent_met_corrV1Q3K	pm ★ ★ 🛣	3209.04	Dolus_noFPE_3cptP 1cptM_uni_V1ClQ2V 2Q3V3ClmKpm.txt	yFentanyl: prop yNorfentanyl: const	V1 Cl Q2 V2 Q3 V3 Clm Kpm
parent Oro2	tment: BIC lower	parent_met_err		or04_bis_wo_sim_annealing	-O r06_parent_met_corrQ3Kpm
			r05_parent_me	et_noREV2CImCI	• r07 parent met corrV1Q3Kp


Structural model

Statistical model

PARAMETERS	DISTRIBUTIONS	RANDOM EFFECTS	- CORRELATION +
		Select: All None	#1
V1			
Cl			
Q2			
V2			
Q3			
V3		✓	
Clm			
Kpm		~	~

Population Parameters Visual Predictive Checks

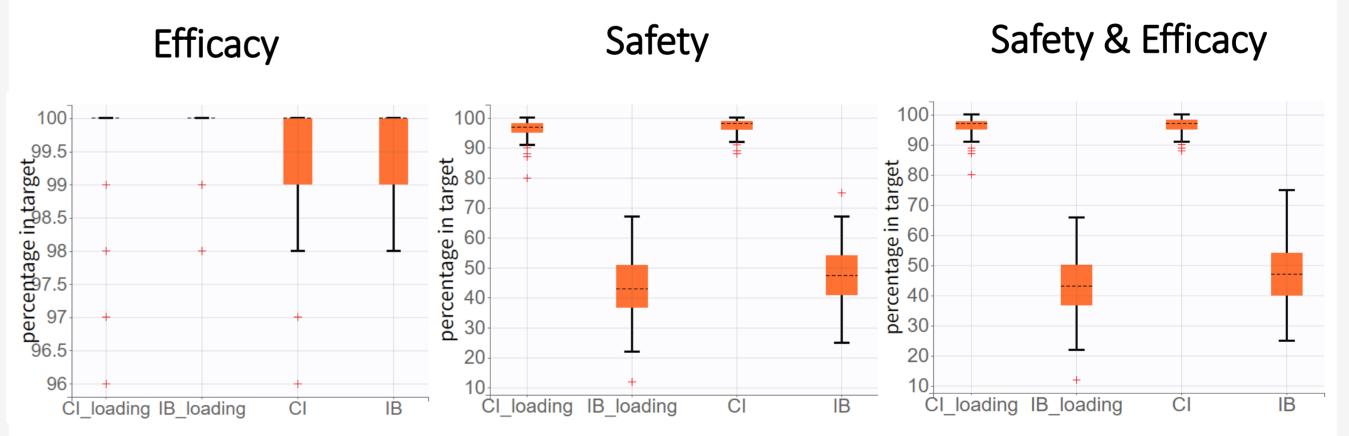

Save time and focus on the results with built-in DIAGNOSTIC **PLOTS**

Keep track of your MODEL BUILDING steps and compare runs with Sycomore

Quickly define populations and simulate them **EFFICIENTLY** in **C++**

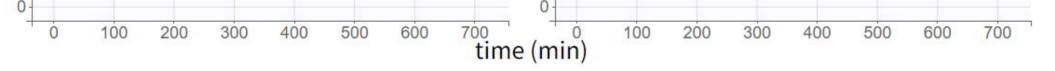
COMPARE DOSING REGIMEN IN SIMULX

How many ids stay in target after constant IV infusion (CI) vs. individual boluses (IB) of fentanyl, with or without 1. loading dose?



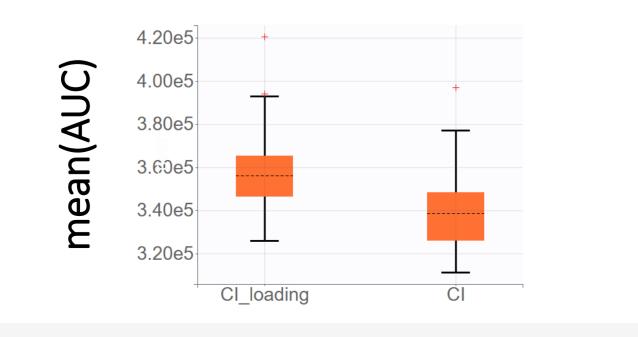
For each replicate study:

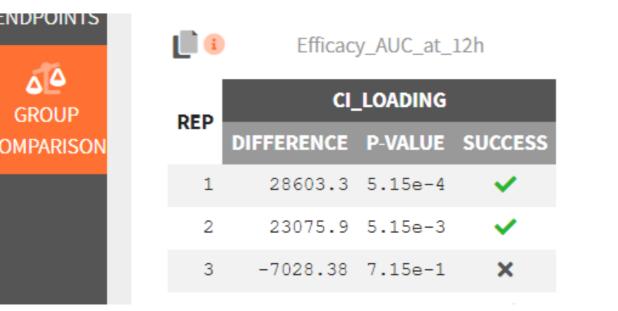
- For each id in each group, compute outcomes: Cmax, AUC_12h
- For each group, compute endpoints:
 - % of ids with Cmax below safety target -
 - % of ids with AUC above efficacy target
 - % of ids with both Cmax and AUC in target


Distribution of endpoint (%ids in target) over replicates for:

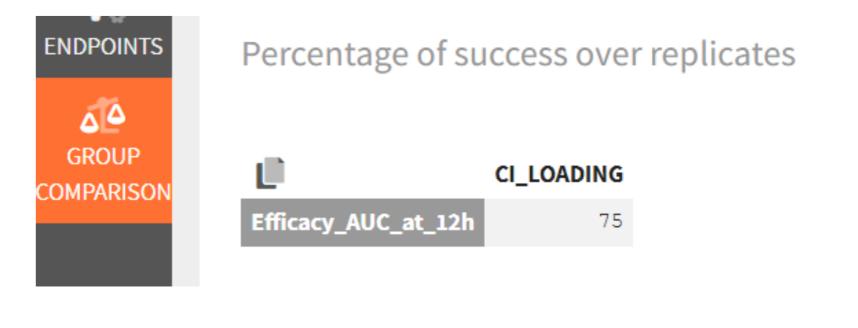
Post-process your simulations with built-in **OUTCOMES & ENDPOINTS**

1,200 1.400


time


Cl of 1.2mg improves safety of fentanyl compared to IB. The efficacy of fentanyl seems improved with a loading dose.

2. In a scenario where fentanyl is given with a CI, does a loading dose improve therapeutic efficacy (characterized in terms of mean AUC at 12h)? What is the probability of technical success to reach higher systemic exposure of fentanyl with a loading dose?


Distribution of mean(AUC) over replicates for infusion with/without loading dose

T-test to check if mean(AUC) is higher with a loading dose for each replicate study

Estimated success rate of reaching higher systemic exposure of fentanyl with a loading dose = 75%.

STATISTICAL TESTS to check trial success in a few clicks

These simulations assume that only the parent drug Fentanyl has an effect. The same investigation could be done for the metabolite or a combination of parent and metabolite. CI: total amount 1.2mg over 12h IB: 0.1 mg QH. Safety target: Cmax < 1ug/L. Efficacy target: AUC_12h > 0.3ug/L*12h. Loading dose: 50ug.