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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    

 

In population pharmacokinetics, discarding BQL data may result in a 

more biased and/or less precise estimation of the population parameters 

(1,2). Previous studies have proposed several strategies in the context of 

NONMEM and assessed their relevance in the case of a one compartment 

PK model (1,2). In this study, three practical strategies for handling BQL 

values were compared on simulated data with a two-compartment model. 

All these estimations were made with WinBUGS (3). A limited exploration 

of the influence of the information content of the design on the performance 

of each method has been made. 
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DEFINITION OF SYMBOLSDEFINITION OF SYMBOLSDEFINITION OF SYMBOLSDEFINITION OF SYMBOLS    

 

yj  the vector of observations gained in the j-th individual 

f(.) the predicted concentration, tj the vector of times 

Pj. the p-vector of individual pharmacokinetic parameters 

εj  the vector of residual errors with mean 0 and covariance matrix Σ 

2

ij
g  the elements of Σ i.e.  the variance attached to the i-th observation in 

individual j 

θ the vector of fixed effects 

Ω the variance-covariance matrix of η's 

CL elimination clearance, Q distribution clearance, V1 central volume, V2 

peripheral volume  
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THEORYTHEORYTHEORYTHEORY    

 

The population model is a three-stage hierarchical model 

 
First stageFirst stageFirst stageFirst stage: residual error model  ),(N~)t,P(fy

jjjj
Σεε+= 0  (1) 

Σ is diagonal with elements  [ ]2
21

2 σ+σ= )t,P(f.g
ijij

     (2) 

 

Second stageSecond stageSecond stageSecond stage: interindividual variability  ),(logN~Plog
j

Ωθ  (3) 

 

Third stageThird stageThird stageThird stage: priors for the population parameters θ, Ω and σ 

 )p,R(Wishart~)C,M(N~log)b,a(Gamma~
12

1

−− Ωθσ    (4) 

where a, b, M, C, R and p are fixed. 
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The likelihood for the population parameters is the product of the 

contributions of each individual, Lj : 

  ηΩησηθ=σΩθ ∫ d)./(p).,,/y(p),,(L
jjjj

22        (5) 

where 

 [ ]2212

ijijjijijjij
g/))t,P(fy(expg),,/y(p −∝σηθ −  if  yij > QL    (6) 

or [ ]
ij

QL

ijijjijjij
dy.g/))t,P(fy(exp),,/y(p ∫ −∝σηθ

0

222  if  yij < QL    (7) 

However, most commercially available softwares unless WINBUGS do not 

implement equation (7), so that BQL values cannot be handled correctly. 
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METHODS FOR HANDLING BQL VALUESMETHODS FOR HANDLING BQL VALUESMETHODS FOR HANDLING BQL VALUESMETHODS FOR HANDLING BQL VALUES    

 
Method 1 Method 1 Method 1 Method 1 consists in discarding BQL values from the data. 

Method 2Method 2Method 2Method 2: the BQL values are fixed to QL/2, while σ2 is fixed to QL/4. If 

there are several consecutive BQL values, only the first is kept. 

 
Method 3 or reference methodMethod 3 or reference methodMethod 3 or reference methodMethod 3 or reference method makes use of equation (7). The BQL data are 

replaced by the missing value code in the data file, and the bounds of the 

integral of equation (7) must be supplied. 

 Method 4 or gold standard methodMethod 4 or gold standard methodMethod 4 or gold standard methodMethod 4 or gold standard method is analogous to method 1 but with no 

BQL values, i.e. all the observations are available. 

 
 The performances of the methods were assessed by simulation of 

pseudoexperimental data. The specific example is as follows. 
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SIMULATION OF THE DATA (1)SIMULATION OF THE DATA (1)SIMULATION OF THE DATA (1)SIMULATION OF THE DATA (1)    

    
Drug dispositionDrug dispositionDrug dispositionDrug disposition: open bicompartmental model, IV bolus, dose 1000 mg. 

 
Individual parametersIndividual parametersIndividual parametersIndividual parameters were generated according to equation (3). The median 

of (CL, Q, V1, V2) distribution was θ = (3.5, 1, 10 ,10) (typical half-lives of 1.5 

and 9.5 h). The interindividual CV of each parameter was 0.25. "Observed" 

concentrations were generated with σ1 = 0.15 and σ2 = 0. 

 
Four observationsFour observationsFour observationsFour observations per individual, two sampling schedules: 

The population D-optimal schedule (4)   TD = (0.1, 4.5, 15, 32), 

The nearly-optimal schedule      TnonD = (0.25, 8, 20, 32). 

The ratio of the determinant of the population Fisher information matrix 

calculated for these two schedules is 0.99 
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SIMULATION OF THE DATA (2)SIMULATION OF THE DATA (2)SIMULATION OF THE DATA (2)SIMULATION OF THE DATA (2) 

 
In a given data set, the same schedule was applied to all individuals. The first 

three samples were always above QL, the fourth was occasionally BQL. 

In some data sets (denoted as mmmm = 1/3 = 1/3 = 1/3 = 1/3), samples were discarded so that the number 

of samples (among the first three) in a given individual could be 0, 1, 2 or 3. In 

other data sets (denoted as mmmm = 3/3 = 3/3 = 3/3 = 3/3), this random elimination procedure was not 

applied. 

Data sets were generated for various combinations of the values of the population 

size N, the total number of data points n, the proportion m, the quantification limit 

QL and the sampling times T, as shown in table Itable Itable Itable I. 

Ten replicatesTen replicatesTen replicatesTen replicates of each data set were obtained by generating samples from the 

distributions of P and ε. A plot of the data generated for a single replicate is shown 

in figure 1figure 1figure 1figure 1. 
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ESTIMATION OF THE POPULATION PARAMETERSESTIMATION OF THE POPULATION PARAMETERSESTIMATION OF THE POPULATION PARAMETERSESTIMATION OF THE POPULATION PARAMETERS    

    
 The population parameters ψ = (θ, Ω, σ1)  were estimated for each replicate 

of all data sets described in table I using WinBUGS 1.3 (2), with non-

informative priors. For each replicate, the mean and the SD of the posterior 

distribution of the 9 elements of ψ  was obtained. 

 

MEASURES OF PERFORMANCEMEASURES OF PERFORMANCEMEASURES OF PERFORMANCEMEASURES OF PERFORMANCE 

For each replicate, bias and precision were measured by: 

the mean absolute error:     )
ˆ

(AbsMAE
k k

kk∑
= ψ

ψ−ψ
=

9

1
9

100
 

the mean standardized standard error: )
SE

(MSSE
k k

k∑
=

=
9

1
9

100

ψ
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RESULTS AND DISCUSSION (1)RESULTS AND DISCUSSION (1)RESULTS AND DISCUSSION (1)RESULTS AND DISCUSSION (1)    

 
 The two summary statistics MAE and MSSE for the ten replicates of any 

test case were very reproducible: Hence, only the means of the ten replicates 

are reported in the bar graphs, not the ranges. 

 
A very similar pattern was observed in all cases: the performances of the 

methods ranked in the order 1 < 2 < 3 < 4order 1 < 2 < 3 < 4order 1 < 2 < 3 < 4order 1 < 2 < 3 < 4. Method 1 performed really poorly in 

some cases, method 2 achieved a good accuracy but a poor precision, and 

method 3 achieved in many cases the best possible performances, i.e. those of 

method 4. However, performances of method 2 may depend on the imputed 

value (here QL/2), the standard deviation (here QL/4), and the terminal half-

life. These points remains to be studied. 
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RESULTS AND DISCUSSION (2)RESULTS AND DISCUSSION (2)RESULTS AND DISCUSSION (2)RESULTS AND DISCUSSION (2)    

 

 The best performances were observed with case Icase Icase Icase I (typical MAE and MSSE 

#10%), i.e. a relatively reach data situation (3 or 4 measures per individual, a 

total of 240 measures), with a small proportion of BQL values (10%). 

In case IIIn case IIIn case IIIn case II, a typical sparse data situation (same conditions as case I but a 

smaller number of samples per individual, a total of 120 measures and a 20% 

proportion of BQL values), MAE and MSSE rise to #15%. When the proportion 

of BQL values was increased to 30% by increasing QL (case IVcase IVcase IVcase IV), the statistics 

did not increase further, unless for the method 1. Case II can also be compared 

to case IIIcase IIIcase IIIcase III, where the conditions were the same but the number of individuals 

was increased 3-fold. This resulted in an improved estimation (reduction of 

both statistics to about 10%). Hence, the differences between method 1 and the  
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RESULTS AND DISCUSSION (3)RESULTS AND DISCUSSION (3)RESULTS AND DISCUSSION (3)RESULTS AND DISCUSSION (3) 

 

other methods were increased when the amount of information was lower and 

when the proportion of BQL values increased. 

 The performances of two sampling schedules were evaluated. The rationale 

is that the design influences the bias and the accuracy of the population 

parameter estimates. The D-optimal design, which maximizes the determinant 

of the population Fisher information matrix, increases the accuracy and 

reduces the bias of the parameter estimates. The two different sampling 

schedules with similar amount of information achieved similar performances 

in the estimation of the population parameters in the face of BQL data. 

Comparison with the performances of a widely non-optimal design remains to 

be done. 
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CONCLUSIONSCONCLUSIONSCONCLUSIONSCONCLUSIONS    

    
Conclusions for one- or two-compartment model are similar: Discarding 

BQL values leads to a poor estimation of the population parameters especially 

when the amount of information is low and when the proportion of BQL values 

is high. 

Method 2 works quite well and is very easy to implement in many 

softwares, but its performances may depend on the imputed value, the 

standard deviation, and the terminal half-life. 

Method 3 works only slightly better and is not easy to implement in most 

softwares (including NONMEM), unless WinBUGS. 

Different sampling schedules with same information content yields similar 

performances. 
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TABLE I. CONDITIONS OF THE SIMULATIONSTABLE I. CONDITIONS OF THE SIMULATIONSTABLE I. CONDITIONS OF THE SIMULATIONSTABLE I. CONDITIONS OF THE SIMULATIONS    

 
Name QL N m na %BQLb Schedule 

IaIaIaIa    0.50.50.50.5    60606060    3/33/33/33/3    240240240240    10101010    TTTTDDDD    
Ib 0.5 60 3/3 240 10 TnonD 
IIaIIaIIaIIa    0.50.50.50.5    60606060    1/31/31/31/3    120120120120    20202020    TTTTDDDD    
IIb 0.5 60 1/3 120 20 TnonD 
IIIaIIIaIIIaIIIa    0.50.50.50.5    180180180180    1/31/31/31/3    360360360360    20202020    TTTTDDDD    
IIIb 0.5 180 1/3 360 20 TnonD 
IVaIVaIVaIVa    0.650.650.650.65    60606060    1/31/31/31/3    120120120120    30303030    TTTTDDDD    
IVb 0.65 60 1/3 120 30 TnonD 
 
QL = quantification limit. N = number of individuals. m = typical number of 

measures per individual among the first three samples. 

a the total number of data points n includes the BQL data points 

b percentage of BQL values with respect to n 



 16 

FIGURE 1. PLOT OF A TYPICAL DATA SET FOR CASE IIAFIGURE 1. PLOT OF A TYPICAL DATA SET FOR CASE IIAFIGURE 1. PLOT OF A TYPICAL DATA SET FOR CASE IIAFIGURE 1. PLOT OF A TYPICAL DATA SET FOR CASE IIA 

The dashed line shows the quantification limit. 
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FIGURE 2. PLOT OF OBSERVED VERSUS PREDICTED FIGURE 2. PLOT OF OBSERVED VERSUS PREDICTED FIGURE 2. PLOT OF OBSERVED VERSUS PREDICTED FIGURE 2. PLOT OF OBSERVED VERSUS PREDICTED 

CONCENTRATION FOR A RUN OF CASE IACONCENTRATION FOR A RUN OF CASE IACONCENTRATION FOR A RUN OF CASE IACONCENTRATION FOR A RUN OF CASE IA    
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