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Pharmpy is an open-source software package for pharmacometric modeling 

(available in Python and in R via the pharmr package). It has functionality ranging 

from reading and manipulating model files and datasets, to executing workflows 

as full tools and collecting and presenting subsequent results. It can parse many 

different NONMEM models into components such as parameters, statements, and 

differential equations, however the model objects themselves are not bound to 

their original language, they are general.  Due to the model abstraction in 

Pharmpy, many manipulations can be applied to the model and then either update 

the original code or, as a future extension, translate to other languages. The 

transformations can be combined into more complex tools which can generate 

candidate models, fit them with e.g. NONMEM and then select the best model 

based on a pre-specified criteria, such as OFV or BIC.  

What is Pharmpy?

All parsed models are broken into different components such as parameters, 

random variables, and statements. The dataset is also parsed, and together with a 

datainfo-file you can specify the content of each column (IDV, covariate etc.). By 

abstracting an input model to a Pharmpy model, it is possible to read in a 

NONMEM model and translate the model into e.g. nlmixr (which is implemented as 

a proof of concept).

Parse and represent models and its components

Many types of transformations can be applied to the Pharmpy object via the 

modeling API. The transformations can be piped and the subsequent model 

changes can be seen by printing different attributes of the Pharmpy models. After 

modifying the model, you can also generate updated model code. The modeling 

module also has functions for summarizing results, parameter sampling, and 

dataset manipulations.

Script and explore model building
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Finally, the transformations can be combined into more complex tools. The tools 

have functionality for creating model candidates and fitting multiple models (using 

parallelization where possible), then presenting the subsequent results. The tools 

are implemented independently from the estimation software, it is only when 

fitting that the tools use software specific code. Furthermore, multiple tools are 

parts of an overarching Automatic Model Development (AMD) tool [1]. In multiple 

tools, a machine learning method is used to predict influential individuals and 

outliers [2] for all candidate models created by the tool.                      

Automatic model building and complex tools

Automatic conversion to mu-referenced model

Adding time after dose to dataset

Change structural model (automatic ADVAN conversion for NONMEM)

Summarize modelfit results (e.g. OFV, runtime, parameter estimates)

Example functions

modelsearch – search for best structural model for a PK model [3]

iivsearch – search for best IIV structure (both variance and covariance)

resmod – search for best residual error model

estmethod – compare estimation methods and ODE solvers

Example tools

m <- read_model('path/to/model') %>% 

     mu_reference_model(m)

Before
$PK
TVCL=THETA(1)*WGT
TVV=THETA(2)*WGT
CL=TVCL*EXP(ETA(1))
V=TVV*EXP(ETA(2))
S1=V

After
$PK
TVCL=THETA(1)*WGT
TVV=THETA(2)*WGT
MU_1 = LOG(TVCL)
CL = EXP(ETA(1) + MU_1)
MU_2 = LOG(TVV)
V = EXP(ETA(2) + MU_2)
S1=V

An example: mu-referencing

m <- read_model('path/to/model') 

algorithm <- 'brute_force_no_of_etas'

res <- run_iivsearch(model=m,

                     algorithm=algorithm,

                     rank_type='bic')

Summary of  tool
            description        dbic  rank
model                                                                 
candidate3      [CL,VC]    4.282024     1
base_model  [CL,VC,MAT]    0.000000     2
candidate2     [CL,MAT] -217.691571     3
candidate6         [CL] -385.641987     4
candidate1     [MAT,VC] -631.871991     5
candidate5         [VC] -633.419500     6
candidate4        [MAT] -815.076729     7
candidate7           [] -834.249063     8

An example: iivsearch-tool

Independent of modeling language –  model abstraction is separate 

from model language which allows for easier integration of additional 

modeling languages

Tools are modular – parts of tools can easily be split and recombined 

into new tools

Aid in reproducibility and traceability – possible to fully script a 

workflow directly in R (including preprocessing of data, manipulations to the 

model, fitting, and summarizing results)

Flexible – scope can range from low-level manipulations of models to 

full tools with automatic model building

Key features

Pharmpy is available on PyPI and pharmr is available on CRAN.

https://pharmpy.github.io/
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