
Pharmpy: a versatile open-source

library for pharmacometrics
Rikard Nordgren1, Stella Belin1, Zhe Huang1, Aurelien Ooms1, Simon J. Carter1, Xiaomei Chen1, Osama Qutishat1, Alzahra Hamdan1,
Shijun Wang1, Tianwu Yang1, Piyanan Assawasuwannakit1, Simon Buatois2, João A. Abrantes2, Andrew C. Hooker1, Mats O. Karlsson1

1Department of Pharmacy, Uppsala University, Sweden
2Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland

Pharmpy is an open-source software package for pharmacometric modeling

(available in Python and in R via the pharmr package). It has functionality ranging

from reading and manipulating model files and datasets, to executing workflows

as full tools and collecting and presenting subsequent results. It can parse many

different NONMEM models into components such as parameters, statements, and

differential equations, however the model objects themselves are not bound to

their original language, they are general. Due to the model abstraction in

Pharmpy, many manipulations can be applied to the model and then either update

the original code or, as a future extension, translate to other languages. The

transformations can be combined into more complex tools which can generate

candidate models, fit them with e.g. NONMEM and then select the best model

based on a pre-specified criteria, such as OFV or BIC.

What is Pharmpy?

All parsed models are broken into different components such as parameters,

random variables, and statements. The dataset is also parsed, and together with a

datainfo-file you can specify the content of each column (IDV, covariate etc.). By

abstracting an input model to a Pharmpy model, it is possible to read in a

NONMEM model and translate the model into e.g. nlmixr (which is implemented as

a proof of concept).

Parse and represent models and its components

Many types of transformations can be applied to the Pharmpy object via the

modeling API. The transformations can be piped and the subsequent model

changes can be seen by printing different attributes of the Pharmpy models. After

modifying the model, you can also generate updated model code. The modeling

module also has functions for summarizing results, parameter sampling, and

dataset manipulations.

Script and explore model building

This work was supported by F. Hoffmann-La Roche Ltd., Basel, Switzerland and

Bayer AG. A special thanks to Dr. Emilie Schindler, Dr. Sylvie Retout, Dr. Valérie

Cosson, and Dr. Franziska Schaedeli Stark from F. Hoffmann-La Roche Ltd., Basel

for conducting testing and giving feedback.

Acknowledgements

Finally, the transformations can be combined into more complex tools. The tools

have functionality for creating model candidates and fitting multiple models (using

parallelization where possible), then presenting the subsequent results. The tools

are implemented independently from the estimation software, it is only when

fitting that the tools use software specific code. Furthermore, multiple tools are

parts of an overarching Automatic Model Development (AMD) tool [1]. In multiple

tools, a machine learning method is used to predict influential individuals and

outliers [2] for all candidate models created by the tool.

Automatic model building and complex tools

Automatic conversion to mu-referenced model

Adding time after dose to dataset

Change structural model (automatic ADVAN conversion for NONMEM)

Summarize modelfit results (e.g. OFV, runtime, parameter estimates)

Example functions

modelsearch – search for best structural model for a PK model [3]

iivsearch – search for best IIV structure (both variance and covariance)

resmod – search for best residual error model

estmethod – compare estimation methods and ODE solvers

Example tools

m <- read_model('path/to/model') %>%

 mu_reference_model(m)

Before
$PK
TVCL=THETA(1)*WGT
TVV=THETA(2)*WGT
CL=TVCL*EXP(ETA(1))
V=TVV*EXP(ETA(2))
S1=V

After
$PK
TVCL=THETA(1)*WGT
TVV=THETA(2)*WGT
MU_1 = LOG(TVCL)
CL = EXP(ETA(1) + MU_1)
MU_2 = LOG(TVV)
V = EXP(ETA(2) + MU_2)
S1=V

An example: mu-referencing

m <- read_model('path/to/model')

algorithm <- 'brute_force_no_of_etas'

res <- run_iivsearch(model=m,

 algorithm=algorithm,

 rank_type='bic')

Summary of tool
 description dbic rank
model
candidate3 [CL,VC] 4.282024 1
base_model [CL,VC,MAT] 0.000000 2
candidate2 [CL,MAT] -217.691571 3
candidate6 [CL] -385.641987 4
candidate1 [MAT,VC] -631.871991 5
candidate5 [VC] -633.419500 6
candidate4 [MAT] -815.076729 7
candidate7 [] -834.249063 8

An example: iivsearch-tool

Independent of modeling language – model abstraction is separate

from model language which allows for easier integration of additional

modeling languages

Tools are modular – parts of tools can easily be split and recombined

into new tools

Aid in reproducibility and traceability – possible to fully script a

workflow directly in R (including preprocessing of data, manipulations to the

model, fitting, and summarizing results)

Flexible – scope can range from low-level manipulations of models to

full tools with automatic model building

Key features

Pharmpy is available on PyPI and pharmr is available on CRAN.

https://pharmpy.github.io/

List of references
[1] Xiaomei Chen, Alzahra Hamdan, Shijun Wang, Tianwu Yang, Rikard Nordgren, Stella Belin, Zhe Huang, Simon J. Carter,
Simon Buatois, João A. Abrantes, Andrew C. Hooker, Mats O. Karlsson, Development of a tool for fully automatic model
development (AMD), PAGE 2022
[2] Osama Qutishat, Simon J. Carter, Rikard Nordgren, Alzahra Hamdan, Shijun Wang, Tianwu Yang, Xiaomei Chen,
Simon Buatois, João A. Abrantes, Andrew C. Hooker and Mats O. Karlsson, The development of artificial neural networks for
the prediction of influential individuals and outlying individuals and their application during the model building development
process, PAGE 2022
[3] Alzahra Hamdan, Xiaomei Chen, Stella Belin, Rikard Nordgren, Simon Buatois, João A. Abrantes, Andrew C. Hooker and
Mats O. Karlsson, Automatic Development of Pharmacokinetic Structural Models – Pharmpy Model Search Tool, PAGE 2022

In collaboration with

https://pharmpy.github.io/

