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Introduction Objectives
Clopidogrel (CLO) is an antiplatelet agent with complex Although the CLO-CA is inactive, it is important to characterize its
pharmacokinetics (PK). It is a prodrug, rapidly absorbed after p.o. formation and PK profile, in order to fully understand the complete PK To synthesize data from two
| ration and ively metabolized in the liver, with ~15% of profile of CLO. The PK data obtained in bioequivalence studies are rich,

bioequivalence (BE) studies in order to
characterize the process of CLO absorption
and its conversion to CLO-CA through a
semi-physiological joint PopPK model.

the oral dose oxidized by CYP450 i y to its active metabolite

clopldogrel thiol (CLO-TH), and ~85% of the dose hydrolyzed to the
bolite clopidogrel carboxylic acid (CLO-CA). CLO-CA

plasma levels are much higher than those of CLO and CLO-TH [1].

enabling developement of the PopPK model. There are only a few
published PopPK models for CLO and its metabolites [2-7], focusing
mostly on the CLO-TH in combination with CLO, h , @ joint model
for CLO and CLO-CA that takes into account first-pass effect (FPE) in the
liver has not yet been comprehensively investigated.

Methods

* 2 BE studies: Study 1 and Study 2
« 2-way cross-over design (CLO generic 75 mg tablets vs. reference Plavix 75 mg tablets)
50 healthy subjects (a total of 841 non-zero concentrations of CLO and 1149 of CLO-CA)

Inter-individual random effects —> exponential model,
Intra-individual variability — proportional error model (study-specific)
Inter-occasional variability — in the absorption parameters

CLO absorption — tested as a 1-order model, (lag time or transit compartments), et healthy ¢
also 2-, 3- or 4- compartment models tested

CLO and CLO-CA elimination — tested as 1- and 2-compartment models with linear elimination
FPE of CLO > 90% —> liver compartment included in the model

The fraction metabolized to CLO-TH — fixed,

the fractions of CLO-CA and CLO —> estimated (study-specific)

Clearance of CLO — fixed

Relative bioavailability — estimated for generic medicines from each study

(BA of reference medicine fixed at 100%)

K ion —no | covariate model-k

(body-weight — allometric scaling)

£ minimization h

Model evaluation — of significant digits,
gradients in the last iteration, OFV, AIC, BIC, precision of parameter estimates, GoF plots
Model validation — sample importance resampling (SIR) and VPCs (1000 replicates)

PopPK analysis — NLME approach in NONMEM® (v7.5).

Results Discussion |
Figure 1: The final structural model for CLO and CLO-CA Figure 2: GOFs of the final model: purple color CLO (ng/mL), By combining the data from two BE studies we
cLo have developed a unified model for CLO and

l CLO-CA, which effectively captured the PK

roperties of both compounds.
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parameters ranged up to 14.9%.
CLO-TH

The GoF plots indi d good agr
between the data, and the VPCs indicated the
good predictive abilities of the model.
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The data best fitted the 1-compartment model
for CLO, as in [2], but in contrast to the 2-
compartment models in [3,4]. For CLO-CA our 2-
compartment model was in line with findings of
[5,6].

Figure 1. CL,,,, clearance of inactive metabolite; CL, clearance of parent drug; F, bioavailability; F,y, fraction

to active Fiany fraction to inactive ite; Fo fraction of
the parent drug; K,, transit rate constant; Q,, liver plasma flow; Q,, intercompartmental clearance of
inactive metabolite; V., volume of central compartment of inactive metabolite; V, o, volume of peripheral
compartment of inactive ite; V., volume of distribution of parent drug; V,, volume of the hepatic
compartment.
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Table 1: A summary of CLO and CLO-CA parameter estimates Certain parameters were estimated separately

PRED ™o

N o Dataer Sempling Importaate Rismmpling (IR for each study, which stabilized the model. The
arameters (Units) i 1 i
: i i obtained values for the fractions metabolized to
Estimate bt Median 25-975 Percentile Figure 2. (DV) observed values; (PRED) population predicted values; (IPRED) - ~=v
CLe [L/b/mkg) WSFI i i i individual model predicted values; (CWRES) conditional weighted residuals; (TAD) CLO-CA were ~87% for both studies, aligning
i i D05 Sl sl time after dose (hour). The solid lines: the lines of identity in (A,B) and the zero with the literature values [1,4]. Inclusion of 2
Fyen_st1 1.08 0.993-1.17 108 0995-1.16 lines in (C,D). The dashed lines: the regression lines. 2 1
e 1o PG o s transit compartmEfnts improved the model
CLips (L/h/70 kg) 870 7.38-100 560 759-973 Fi 3: VPCs of the final model compared to lag time (AIC dropped for 5.416
Ve iam (L/70 kg) 237 19.7-27.7 234 200-269 gure 3: S O e final mode! . .
Qi (L/h /70 kg) 08 802-136 108 894-130 8! units). The transit rate constants (K,) were
5?’5:4/%/ 70kg) sg‘l:?x 503723 09 24702 L0 Cone (ngimL) CLO-CA Cone (microgimL) calculated for each study (6.38 h™! and 7.32 hY),
V, (L/70kg) 15 FIX . - i A L 8 o based on the estimated MTTs.
MTT_st2 (h) 0410 0.381-0.439 0411 0.385-0.438
Foen_st2 0960 0.818-1.10 0952 0.840-1.07 . . " .
rﬁ,;z 768 645888 760 663859 The inclusion of the liver compartment aligned
1\/.;1::1 .Iily a(;i(.;a\:)[uwn..nemzcasiml o ] Nl T asershemetic » L » with the extensive FPE of CLO [1,4].
IV (Ve p) 45.82 104 45.69 37.38-53.99 Since the ion was h and the
nv{v[;m 25.06 132 2530 1854-3038 o .
1V (F_%t1) 266 138 s 20.00-5126 1 polymorphism data were not available, the
1V (F_st2) 2588 241 2631 14.16-35.57 H ; 2
S e 5 oo PP influence of c.ovarlate.s‘ was not tested. Gl.ven
10V (F_st2) 2324 136 2376 18.21-28.27 » that CYP2C19 is not critical in CLO-CA formation,
o ;m i frs it e it is less likely that this covariate would enhance
2748 99 2746 2186-3239
7280 105 7359 57.52-89.97 P
e Yis 50 e o . the m(?del. On the cou:ltrary, as CES1 is
Residual Error Estimate (%) RSE (%) Median CV (%) 25-97.5 Percentile responsible for the formation of CLO-CA [4,8],
Wp (st1) 4195 34 1198 39.37-44.50 the availability of CES1 phenotypes may have
Wp (st2) 2939 57 2951 2757-31.62

resulted in its inclusion in the final model.

Table 1. CL,, clearance of inactive metabolite; CL, clearance of parent drug; CV, coefficient of variation;
FRy_st1, and FR,_st2, fraction parameter for inactive metabolite for study 1 and study 2, respectively; IV, inter-
individual variability for the c ; 10V, inter- variability for the corresponding
parameter; MTT_st1, and MTT_st2, mean transit time. for study 1 and study 2, respectively; Q,, liver plasma
flow; Qiy, intercompartmental clearance of inactive metabolite; F,., st1 and F,., st2, relative bioavailability of
generic compared to reference medicine for study 1 and study 2, respectively; RSE, relative standard error; Vo,
volume of central compartment of inactive metabolite; V,, volume of hepatic compartment; V, o, volume of
of inactive ite; V,p volume of di ion of parent drug; F_st1 and F_st2,
braava//ab/l/ty in study 1 and 2, respectively; Wp, proportional residual error for the corresponding study.

Conclusio

Time after dose (n) Time after dose (n)

The model lays a solid groundwork for potential
future enhancements to create a more complex
model, incorporating the formation of CLO-TH,
genetic variations, and other factors (such as
concurrent drug therapies that interact with CLO)
gleaned from patient data.

Figure 3. Blue rectangles: the observed concentrations; solid and dashed red lines:
the 50th, 5th and 95th percentiles of the predictions; semi-transparent red shaded
area: the simulation-based 95% Cl for the median; semi-transparent purple fields:
the 95% Cl around the 5th and 95th percentiles of the predicted data.

References
Plavix film-coated tablets 75 mg EPAR — Product information EMEA/H/C/000174 (htt;

I

'www.ema.europa.eu/docs/en_GB/document library/EPAR -

~

Product \nformat\on[human[OOOl74[WC500042189 pdf).

d

We developed a comprehensive joint semi-physiological
PopPK model for CLO and its inactive metabolite, CLO-CA.
This model incorporates two transit compartments for
absorption and accounts for FPE in a liver compartment. The
model is based on bioequivalence data obtained from two
studies, providing a robust framework for understanding the
pharmacokinetics of these compounds.
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