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Objectives & Introduction

Objectives: (1) Perform a standard singular perturbation analysis (see e.g. Van Dyke, 1975; Lin and Segel, 1988) of the basic FcRn-regulated
clearance mechanism outlined by Patsatzis et al. (2022) and thereby obtain a deeper understanding of it. (2) Compare the asymptotic clearance
expression to that obtained from a full PBPK model (Shah and Betts, 2012)

Introduction:
� Physiology-based pharmacokinetic (PBPK)

models are important tools for understanding
the distribution and clearance of drugs in
organisms.

� The long half life of antibody drugs is usually at-
tributed to the Neonatal Fc Receptors (FcRn-s)
which bind and save antibodies from degrada-
tion in the endosomal space of endothelial cells.

� A mechanistic formulation of the FcRn-regulated endosomal degradation has been
proposed and employed successfully by several PBPK models found in the literature
(Shah and Betts, 2012; Li and Shah, 2019; Glassman and Balthasar, 2019; Liu and
Shah, 2023). However, due to the complexity of their formulation, a deeper under-
standing of how the parameters in the model affect clearance has so far remained
elusive.

� A simpler form of the mechanism, consisting of a single plasma space and a single
endosomal space, was studied by Patsatzis et al. (2022)–although for an unusually
high dose–through the lens of a computational singular perturbation analysis.

Conclusions & Discussion

� A relatively simple equation relating clearance to physiological
model parameters has been derived.

� The results should caution against estimating kdeg and [FcRn]0
in a PBPK setting simultaneously (cf. Shah and Betts, 2012;
Liu and Shah, 2023)

� For typical physiological parameters and ‘high’ antibody dose
levels IgG elimination is akin to that for target mediated drug
disposition, however, for low dose levels clearance is ‘linear’.

� The dependence of clearance on the model parameters is well
reflected in a full PBPK setting.

Problem Definition & Methods

Problem definition:

� Basic FcRn-regulated endosomal degradation mechanism from Patsatzis
et al. (2022) (Figure below);

� The governing equations and initial conditions read
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Fig.: Basic FcRn model scheme from Patsatzis et al. (2022) with modulated pinocytic uptake.

Methods:

� The system is non-dimensionalised using [FcRn]0 and (kon · [FcRn]0)−1 as
the reference concentration and time scales, respectively;

� The order of magnitudes of the following dimensionless groups are assumed
to be

ε ≡ koff

kon · [FcRn]0
� 1,

CLup/Ve
kon · [FcRn]0

= O(ε),
kdeg

kon · [FcRn]0
= O(ε);

� Series solutions for ε� 1 are sought over each characteristic time scale and
matched using the so-called matched asymptotic expansions technique.

� The solution structure for low, intermediate and high doses were sought cor-
responding to cases when the FcRn is under-, ‘exactly’- and over-saturated,
respectively.

� For further technical details see Kátai et al. (2024).

Results

High doses: Dose
Vp[FcRn]0

− sVe+Vp
sVp
� ε1/2

� FcRn ‘over-saturated’;

� Characteristic phases:

– A: Binding,

– B: Transport,

– B1: Rapid transition,

– B2: Rapid build-up & elim.,

– B3: Slow transition,

– C̃: Overall elimination.

Intermediate doses: : Dose
Vp[FcRn]0

≈ Ve
Vp

+ 1
s

� ‘Exact’ saturation of FcRn;

� Characteristic phases:

– A: Binding,

– B: Transport & equilibration,

– B0: Small build-up & elimination,

– C̃: Overall elimination.

Low doses : − Dose
Vp[FcRn]0

+
sVe+Vp
sVp
� ε1/2

� FcRn not saturated;

� Characteristic phases:

– A: Binding,

– B: Transport & equilibration,

– C: Overall elimination.
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Solution trajectories in phase space:
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Time scales for low doses (τ = t · kon · [FcRn]0): (A) τ = O(1); (B) τ = O(ε−1); (C) τ = O(ε−2)

Clearance expression in the basic FcRn model:

� If clearance, CL, is defined through (a), then in the terminal phase (C & C̃) for all doses CL behaves as in (b):
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Effect of parameters on CL in a full PBPK model:
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Simulations using a full PBPK model†

(10 mg/kg dose in human). (1) CL insensitive to reasonable

changes to CLup as
CLup

Ve
� koff .

(2) Decrease in kdeg, or same fold increase

in [FcRn]0, results in same fold

decrease in CL.

(3) Increase in kdeg, or same fold decrease

in [FcRn]0, results in same fold

increase in CL.

(1)

(2)

(3)

† In-house model of PD-value based on Shah and Betts (2012).
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