
Introduction
• Thrombocytopenia, a frequent adverse event type in cancer therapy, requires clinical platelet 

management to avoid high-grade thrombocytopenia and to ensure treatment continuation. 

• The semi-physiological model for myelosuppression [1] is frequently leveraged to characterize 

and predict myelosuppression (“standard myelosuppression model”), including platelet dynamics 

(platelet count over time). 

• The standard myelosuppression model may require time-intense model refinement (“refined 

model”) to reach adequate predictive performance, potentially hindering timely support of clinical 

drug development programs.

• Machine learning approaches, integrating standard NLME methods with NNs, promise to 

streamline model development in situations of incomplete mechanistic understanding or when 

further model refinement is required [2, 3].
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Results
• The NN-assisted model reduced model development time by identifying a suitable feedback 

function and accomplishing parameter estimation in <2 h. 

• Model execution times in Pumas 2.5.0 were approximately 15 min (refined model) and 60 min 

(NN-assisted model). A comprehensive comparison across models is illustrated in figure 2.

Methods
• Model development was based on platelet counts in ≥2nd line patients with locally advanced and 

metastatic solid tumors (n=82, NCT03449381). Patients received oral brigimadlin 

administrations (5-80 mg on day 1 q3w, day 1 and 8 q4w, or day 1 and 3 q4w).

• The exposure-safety relationship was characterized by relating plasma exposure to platelet 

growth parameters of the myelosuppression model (see equations and figure below).

• Standard and refined myelosuppression models were implemented in NONMEM 7.4 and Pumas 

2.5.0 and compared to the NN-assisted model.

• The conventional NLME-based approach using trial and error to refine the feedback function 

[decrease of the feedback parameter 𝛾 over time, Eq. 9] (i) lacked robustness and adaptability, 

particularly when additional patients were included in the dataset during the study and (ii) 

required significant time investment. 

• NNs were used to identify an appropriate feedback function using DeepPumas (NN-assisted 

model).

Conclusions
Once the function which required more refinement was identified, the NN-assisted myelosuppression 

model reduced model development time substantially while improving predictivity, compared to the 

standard and refined myelosuppression model.

In contrast to the trial and error approach of refining the standard myelosuppression  model, the application 

of NN enabled rapid and automated identification of the feedback function, enhancing its adaptability and 

generalizability when incorporating additional patient data. 

This work advocates for NN integration in complex pharmacometrics scenarios with incomplete 

mechanistic understanding or when further model refinement is required.
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Objectives
Based on the example of thrombocytopenia induced by brigimadlin, a potent, oral murine double minute 2 homolog-tumor protein 53 antagonist, this work 
aimed to: 

• Integrate neural networks (NN) into the nonlinear mixed-effects (NLME) method (“NN-assisted model”)

• Compare model predictivity between the standard, refined and NN-assisted myelosuppression model

Differential equations:

𝑑(A𝑏𝑠)

𝑑𝑡
= −𝐾𝑎 ∗ A𝑏𝑠

𝑑(𝐶𝑒𝑛t𝑟𝑎𝑙)

𝑑𝑡
= 𝐾𝑎 ∗ 𝑎𝑏𝑠 − 𝐾20 ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 − 𝐾23 ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 + 𝐾32 ∗ 𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

𝑑(𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙)

𝑑𝑡
= 𝐾23 ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 − 𝐾32 ∗ 𝑃𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙

𝑑(𝐶𝑖𝑟𝑐)

𝑑𝑡
= 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡3 − 𝐾pla ∗ 𝐶𝑖𝑟𝑐

𝑑(P𝑟𝑜𝑙)

𝑑𝑡
= 𝐾𝑝𝑟𝑜𝑙 ∗ P𝑟𝑜𝑙 ∗ 1 − 𝐸𝐹𝐹 ∗ 𝑁𝑁(𝐵𝐿, 𝐶𝑖𝑟𝑐, 𝑇) − K𝑝𝑟𝑜𝑙 ∗ 𝑝𝑟𝑜𝑙

𝑑(T𝑟𝑎𝑛𝑠𝑖𝑡1)

𝑑𝑡
= 𝐾tr ∗ P𝑟𝑜𝑙 − 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡1

𝑑(T𝑟𝑎𝑛𝑠𝑖𝑡2)

𝑑𝑡
= 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡1 − 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡2 − 𝑆𝐿𝑃 ∗ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 ∗ T𝑟𝑎𝑛𝑠𝑖𝑡2

𝑑(T𝑟𝑎𝑛𝑠𝑖𝑡3)

𝑑𝑡
= 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡2 − 𝐾tr ∗ T𝑟𝑎𝑛𝑠𝑖𝑡3
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× (𝑻𝒊𝒎𝒆 × 𝜽𝟒)
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𝛾
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• The predictive performance of the NN-assisted myelosuppression model slightly improved 

compared to the standard and refined myelosuppression models (see Figure 3) while significantly 

reducing model development time.

• The visual predictive check (VPC) of the standard myelosuppression model indicated that the 

observed platelet nadir (t = 4-5 weeks) fell outside the 95% CI of the predicted 10th and 50th 

percentiles.

• In the refined myelosuppression model, the predictions generally conformed to the observation 

patterns across all percentiles. However, the observed platelet nadir fell outside the 95% CI of 

the predicted 10th percentile, exhibiting -20% relative difference (i.e., overprediction) between 

the 10th observed percentile and the lower bound of the corresponding CI. 

• VPCs indicated best predictivity at the platelet nadir for the NN-assisted model: No observations 

were outside the 95% CI of the 10th, 50th, 90th percentiles and the overall trend in platelets over 

time was adequately described.
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Estimated
parameters

NNs-assisted model
(DeepPumas)

Refined myelosuppression
model (NONMEM)

BL 273 260

MMT 293.1 180.0

EC50 4355 4140

𝛔𝐩 0.20 0.17

𝛔add 11.5 27.2

Figure 1. Illustration of the final platelet count model.

Figure 2. Performance comparison among the standard, refined and NN-assisted myelosuppression 
models in NONMEM, Pumas and DeepPumas.

Figure 3. VPC plots of the standard model , refined model using NONMEM, and NNs-assisted NLME 
model using DeepPumas. 

Table 1. Estimated parameter comparison for final model in NONMEM 

and NNs-assisted model in DeepPumas. 

Abbreviations

BL, platelet baseline [(109)/L]; Circ,  circulating ;  EC50, concentration at half 

maximum effect; MAT, mean absorption time; ML, machine learning; MMT, 

mean maturation time [h] = 4/Ktr; Prol, proliferative cells; UDE, universal 

differential equations; Vp, peripheral volume of distribution; 𝛔𝐩, proportional 

error; 𝛔add ,additive error;
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