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Objectives

Based on the example of thrombocytopenia induced by brigimadlin, a potent, oral murine double minute 2 homolog-tumor protein 53 antagonist, this work
aimed to:

Integrate neural networks (NN) into the nonlinear mixed-effects (NLME) method (*NN-assisted model”)

Compare model predictivity between the standard, refined and NN-assisted myelosuppression model

Introduction Results

* Thrombocytopenia, a frequent adverse event type in cancer therapy, requires clinical platelet  The NN-assisted model reduced model development time by identifying a suitable feedback
management to avoid high-grade thrombocytopenia and to ensure treatment continuation. function and accomplishing parameter estimation in <2 h.

* The semi-physiological model for myelosuppression [1] is frequently leveraged to characterize * Model execution times in Pumas 2.5.0 were approximately 15 min (refined model) and 60 min
and predict myelosuppression (“standard myelosuppression model”), including platelet dynamics (NN-assisted model). A comprehensive comparison across models is illustrated in figure 2.

(platelet count over time).

: 1019 Refined Myelosuppression Model

* The standard myelosuppression model may require time-intense model refinement (“refined A e

model”) to reach adequate predictive performance, potentially hindering timely support of clinical
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Figure 2. Performance comparison among the standard, refined and NN-assisted myelosuppression
models in NONMEM, Pumas and DeepPumas.

I\II ethOdS * The predictive performance of the NN-assisted myelosuppression model slightly improved
compared to the standard and refined myelosuppression models (see Figure 3) while significantly

« Model development was based on platelet counts in =2nd line patients with locally advanced and reducing model development time.

metastatic solid tumors (n=82, NCT03449381). Patients received oral brigimadlin

drlisiiens (B30 e @ e 1 a, cby ©. ane & e, erdey 1 278 3 e, * The visual predictive check (VPC) of the standard myelosuppression model indicated that the

observed platelet nadir (t = 4-5 weeks) fell outside the 95% CI of the predicted 10th and 50th
 The exposure-safety relationship was characterized by relating plasma exposure to platelet percentiles.

growth parameters of the myelosuppression model (see equations and figure below).
* In the refined myelosuppression model, the predictions generally conformed to the observation

* Standard and refined myelosuppression models were implemented in NONMEM 7.4 and Pumas patterns across all percentiles. However, the observed platelet nadir fell outside the 95% CI of

2.5.0 and compared to the NN-assisted model. the predicted 10th percentile, exhibiting -20% relative difference (i.e., overprediction) between

» The conventional NLME-based approach using trial and error to refine the feedback function the 10th observed percentile and the lower bound of the corresponding Cl.

[decrease of the feedback parameter y over time, Eq. 9] (i) lacked robustness and adaptability,
particularly when additional patients were included in the dataset during the study and (ii)
required significant time investment.

* /PCs indicated best predictivity at the platelet nadir for the NN-assisted model: No observations
were outside the 95% ClI of the 10th, 50th, 90th percentiles and the overall trend in platelets over
time was adequately described.

* NNs were used to identify an appropriate feedback function using DeepPumas (NN-assisted ( , (
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Figure 1. lllustration of the final platelet count model. . . . .
Table 1. Estimated parameter comparison for final model in NONMEM
Differential equations: and NINis-assisted model in DeepPumas.
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/I'I Once the function which required more refinement was identified, the NIN-assisted myelosuppression
: model reduced model development time substantially while improving predictivity, compared to the
Capabilities Mechanistic ML UDE standard and refined myelosuppression model.
r
LGy - = - In contrast to the trial and error approach of refining the standard myelosuppression model, the application
Extrapolation v v of NN enabled rapid and automated identification of the feedback function, enhancing its adaptability and
Avoiding overfitting generalizability when incorporating additional patient data.
Modelling complex phenomena M M This work advocates for NN integration in complex pharmacometrics scenarios with incomplete
Able to handle small amount of data V] V] mechanistic understanding or when further model refinement is required.
Pure data-driven insights |
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