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Stochastic Gate Neural Networks for Automatic Covariate 
Selection in Pharmacometrics Population Modeling

Conclusions

• We have successfully applied neural networks with embedded feature selection layer to identify relevant 
covariates in both synthetic and real data.

• We noticed that the method performed well under moderately to highly correlated covariates, but low effect size 
coupled with high CV or covariate imbalance was detrimental for model performance.

• We were able to select subset of relevant covariates on real data, that could further be pruned fitting a full 
covariate model and lead to a model similar to the expert one.

• These results indicate that the proposed approach can be used to significantly sped up covariate search in PK 
modelling.
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Results: applying the method to AZ real data
• The dataset includes 2527 subjects with a total of 7374 timepoints as described in the PK report [6].
• Structural model is a 2-compartmental model with first-order absorption and first-order elimination.
• Body weight is included in the base model with fixed allometric scaling on CL, Vc, Vp and Q.
• Covariates included in initial screening are:

• Categorical: Sex, Race, Ethnicity, Smoking status, Vaccine status, Diabetes, HIV status, Immunocompromised Flag, 
Cancer status, Clonal treatment flag, Chronic kidney disease, Chronic obstructive pulmonary disease, 
Cardiovascular disease

• Continuous: Age, BMI, Height, BSA, ALB, ALT, AST, EGFR, Serum Creatinine, Bilirubin, Creatine Clearance
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We fit a base, covariate-free model to obtain 
estimates of individual random effects (ETAs) for 
which we use NONMEM software. Instead of using 
empirical Bayes estimates for each individual ETA, 
we use samples from conditional distributions [5].
A NN with Stochastic Gate Layer implemented in 
PyTorch is used to predict individual ETA values 
from patient covariates. The layer introduces an 
additional hyperparameter (lambda) controlling the 
penalization for the number of input covariates.

penalization term 
enforcing sparsity

MSE loss

Comparison of covariates identified by our proposed approach vs. Expert built model

Model CL Vc Vp Ka

Expert model Diabetes SEX, Diabetes - SEX, AGE

Proposed model SEX, Diabetes, BMI, BALB SEX, Diabetes, BMI, BALB - SEX, AGE

• To investigate the limits of performance, we tested the algorithm on simulated models, where the base model 
is a single dose 2-compartment model with first order absorption and elimination.

• Categorical (CAT) and continuous (CON) covariate effects are added to clearance (CL) parameter as:

• Synthetic population contained 1000 patients with 11 continuous and 5 categorical covariates with various 
range of correlation; extreme being BWT-BSA with 0.95 correlation coefficient.

• Simulated scenarios always included one low (0.1) and one medium (0.3) covariate effect size on CL.

After using NONMEM to fit the proposed covariate model we can use forest plots to further prune the irrelevant 
covariates based on their clinical relevance (the ones lying within the shaded region), leading to a model very 
similar to the expert one (purple highlight).

Population pharmacokinetic (PK) models describe 
the behavior of drugs in the body and are usually 
constructed within a nonlinear mixed-effects 
framework. The modeling process typically unfolds 
in two steps: first, a structural model is developed, 
where type of absorption, clearance, or the number 
of compartments are chosen. The second stage 
involves searching for covariates that stratify the 
population and clearly affect drug behavior. 
Covariates are chosen based on clinical and 
statistical relevance - typically determined by 
running a time-consuming stepwise covariate 
selection algorithm [1]. 
Recently, there have been attempts to employ fast 
Machine Learning (ML) methods to pre-select 
relevant covariates by searching for patterns in 
estimated individual PK parameters [2, 3].
The objective of this study is to explore Neural 
Networks (NN) with Stochastic Gates [4] layer, which 
provide a one-step training and feature selection 
algorithm.

Final gates are a mean value of gates probability 
obtained from a 5-fold cross validation.
All hyperparameters (given below), including NN 
architecture, learning parameters and lambda are 
manually tuned on one synthetic dataset and kept the 
same for the rest of the datasets.
Running time for one PK parameter is 15-20 mins on 
a single GPU.

Two terms must be of the same order of magnitude 
to ensure effective learning!
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Number of layers 3 Weight decay 0.001

Nodes per layer 50 Activation tanh

Dropout 0.5 Optimizer Adam

lambda 0.2 Learning rate 0.001
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Simulated covariates (CON) Sampling CV limit Identified covariates Conclusion

AGE  with effect size  0.1
BWT  with effect size 0.3

8 samples per 
patient

<=60% AGE, BWT Irrelevant but highly correlated variables (BSA) correctly labeled 
as irrelevant! 
High CV impact algorithms ability to identify low effect covariate.80 BWT

6 samples per 
patient

<=40% AGE, BWT 
(BSA sometimes)

Sparser sampling reduces models ability to identify low effect 
covariates, as well as increases the chance of selecting wrong 
(correlated) covariates.

>=60% BWT (BSA sometimes)

Simulated covariates (CAT) Covariate imbalance Identified covariates Conclusions

SMK - effect size  0.1
COPD - effect size  0.3

COPD > 5%, SMK > 20% COPD, SMK Low effect and high covariate imbalance makes the covariate 
hard to identify.

SMK <20% COPD only

Example of training evolution for rich sampling with low CV

Irrelevant highly correlated – eventually converges much below 
the importance threshold’!

Irrelevant

effect 0.1

effect 0.3

Losses converge well
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