Pharmacometric modelling to describe pharmacokinetics and exposure -response of ivermectin in adolescent patients infected with *Trichuris trichiura*

David T. Ajayi^{1,2}, Ochuko M. Orherhe ^{1,3}, Goonaseelan (Colin) Pillai^{1,4,5}, Samer Mouksassi^{1,6}, Britta Steffens⁷, Dominic Bräm⁷, Viviane Sprecher^{8,9}, Daniela Hoffmann^{8,9}, Michael Buettcher^{7,9,10}, Jean T. Coulibaly^{11,12}, Said M. Ali¹³, Jennifer Keiser^{8,9}, Marc Pfister^{7,13}

Introduction

- Soil-transmitted helminth infections are a major public health challenge in many tropical and subtropical low-income regions.¹
- Monotherapy with albendazole has shown good efficacy for roundworm and hookworm but not for Trichuric trichiure (whipworm) infection, for which

Model-based

simulations

indicate that

higher doses such

Results PK/egg counts

Figure 3: Simulated peak concentration of ivermectin and (B) Simulated relative egg counts with doses 200, 400, and 600 μ g/kg ivermectin.

Trichuris trichiura (whipworm) infection, for which the combination with ivermectin has been explored.²

 Studies have shown that the efficacy of the combination therapy was significantly higher in Tanzania (Pemba Island) than in Côte d'Ivoire.³

Objectives

• To investigate the difference between the population pharmacokinetics (popPK) of ivermectin when combined with albendazole in Tanzania and Côte d'Ivoire, to determine if an exposure-response analysis of ivermectin in combination with albendazole could explain the low efficacy in Côte d'Ivoire, and to explore, using simulations, whether higher doses might have different outcomes.

Methods

• A total of 110 microsamples were collected in the framework of a randomized controlled trial from 24 adolescents with *T. trichiura* infection in Côte d'Ivoire and Tanzania, who were treated with a combination

as 400 and 600 µg/kg may be associated with reduced egg

count

Want to learn more? << Scan Here

Table 2: Bivariate analysis of covariateswith cure

	Cure		
Covariate	No	Yes	P-value
Sex			
	10 (62.5)	6 (37.5)	0.673
Male			
	4 (50.0)	4 (50.0)	
Female			
Study site			
	8 (100.0)	0 (0)	0.006
Côte d'Ivoire			
	6 (37.5)	10 (62.5)	
Tanzania			
Age (years)	15.21 ± 2.04	15.90 ± 1.60	0.371
Body weight (kg)	46.41 ± 10.61	51.37 ± 8.29	0.235

Table 3: Regression analysis of ivermectin and albendazole exposure

therapy of ivermectin and albendazole.^{4,5}

- A popPK model was developed with the Monolix 2023R1 software.
- A regression analysis was performed to investigate the relationship between egg reduction in the faeces and different exposure metrics of ivermectin and albendazole for each country.
- Using simulations, exposure level of the current ivermectin dose (200 μg/kg) was compared to higher doses
 of ivermectin (400 and 600 μg/kg).

Results PK

(A) Linear scale

Figure 1: Concentration of ivermectin versus time stratified by study site: (A) linear scale. (B) semi-log scale.

Figure 2: Visual predictive check of plasma ivermectin concentrations.

Parameters	Estimate	P-value
eta_0	2.81	0.21
eta_1	0.07	0.20
β_2	0.002	0.48
$ar{eta}_0$	2.16	0.26
$ar{eta_1}$	0.05	0.23
$ar{eta}_2$	0.07	0.35

Table 1: Parameter Estimates for the FinalPopulation Pharmacokinetic Model

Parameter	Estimate (%RSE)
Population parameter	
$K_{a}(h^{-1})$	0.26 (11.7)
V/F(L)	162.43 (9.7) x (WT/50)
CI/F (Lh ⁻¹)	7.82 (4.9) x (WT/50) ^{0.75}
Inter-individual variability (IIV, %)	
IIV k _a	10.0 (fixed)
IIV V/F	29.0 (23.7)
IIV CI/F	16.8 (42.0)
Residual error	
Additive error	3.21 (42.6)
Proportional error	0.18 (32.2)

Conclusion

- A one-compartment model with first-order absorption and first-order elimination fitted the PK data of ivermectin collected from adolescent patients with *T*. *trichiura* in Tanzania and Côte d'Ivoire with good adequacy, and the PK parameters were not significantly different across both study sites.
- There was a relationship between relative egg count and peak concentration of ivermectin co-administered with albendazole in Côte d'Ivoire, although not statistically significant.
- Model-based simulations indicate that higher doses such as 400 and 600 µg/kg may be associated with reduced egg count.

References

- Pullan & Brooker,2012. Parasites and Vectors. doi:10.1186/1756-3305-5-81
 Adegnika et al,2014. Antimicrob Agents Chemother. doi:10.1128/AAC.01317-13
 Hürlimann et al, 2022. Lancet Infect Dis. doi:10.1016/S1473-3099(21)00421-7
 Sprecher et al., 2023. Clin Infect Dis. doi:10.1093/cid/ciad387
- 5. Welsche et al., 2023. Lancet Infect Dis. doi:10.1016/S1473-3099(22)00589-8