Using machine learning for discovery of mechanistic

models from data useable in pharmacometrics.
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Motivation Methods and Materials
e \We use Deep Nonlinear Mixed Effect Models to effectively learn unknown submodels directly e \We assume that all subjects share a global model structure, intersubject variability is fully
from data in DeepPumas captured by the individual parameters
e \We present a method to distill symbolic expressions from longitudinal data using the provided e To recover the functional form, we perform symbolic regression on Z, the mapping of the neural
data-driven hypothesis of the machine learning model. network using the individual input xyn and the typical value random effects [£ |7y
lu Ty e \We investigate the validity of our approach on a real-world dataset, consisting of 23 patients
ko, E ki ki who exhibit high-dose Ara-C chemotherapy [2] comparing it to the classical Friberg model
using Pumas [4]
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Graphical overview of the model using n;, transition compartments as reported in [2]. We ﬁ TN 7 K™ +oyy
replace the feedback Fz using a neural network and recover an analytic function. @ ) N
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Experiments

e We used n;, = 1, 2, 3 transition compartments for each model and selected the best

e The 23 subjects of the used dataset have been divided into a training and validation set ( 18, 5 subjects ) stratified by treatment statistics
e Each DeepNLME model has been fitted ten times, varying the network parameters

e The best performing DeepNLME model on the training data has been used for symbolic regression for each n;,

e The shown results have been selected over the different models via BIC of the validation set

e The shown VPC are derived using 300 simulations of the full population per model

Conclusion

e \We showed that an algorithmic recovery of mathematical expressions for longitudinal data is possible using DeepNLME
e The found model shows a similar structural properties to the Friberg model but is numerically favourable and resembles a Hill equation
e The performance of both the DeepNLME model and the discovered model is comparable to the baseline in terms of loglikelihood and underline the usefulness of both approaches
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