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Workflow: We propose three processes for different stages of model development, involving

identifiability analyses before or after model estimation (Figure 5):

• Before development: structural identifiability analysis on the initial model(s), followed by

practical identifiability analysis, considering study design. This helps to determine a

modelling strategy by providing an a priori check to see which models could be supported by

the data and informs which biologically relevant parameters can be identified from the data.

A categorical test is useful in this stage, followed by a continuous one.

• During development: repeat these analyses at key steps. Structural analysis can be skipped if

model complexity did not increase. Continuous test are most useful.

• After development: practical identifiability analysis with continuous indicators, to assess

model quality.

PK model: categorical yes/no answers of SMM and FIMM to the identifiability question are

valuable in case of structural unidentifiability (scenario C in Table 1): if a model is categorically

unidentifiable, then it needs to be redefined or additional analytes need to be measured to

resolve this. Continuous indicators provide more detail and may indicate badly identifiable cases

(B in Table 1). This may be due to study design limitations or the values of the parameters. The

remedy is to change the model or adapt the design. Continuous indicators are subject to

interpretation by the analyst and therefore require some experience in their application.

In line with expectations, all categorical and continuous indicators indicated identifiability for

scenario A and unidentifiability for C. For B, categorical indicators showed identifiability, but

continuous ones indicated this scenario was less identifiable than A (Table 1).

MAPK model: strongest identifiability was shown for subject 1 (baseline 100%

dephosphorylated) and the three subjects combined (Figure 6), while the other two cases were

less identifiable, with indicators near zero (especially subject 3).

This example shows that the methods can be applied to more complex cases as well.

• We present two newly developed methods [4,5] that characterize identifiability with categorical and

continuous indicators (Figure 4), namely the Sensitivity Matrix (SM) Method (SMM) and Fisher

Information Matrix (FIM) Method (FIMM). They assess practical identifiability by restricting the

observed quantities to user-selected time points (in contrast to structural analysis that assumes an

idealized design).

• SMM examines the SM, consisting of the derivatives of the model output with respect to its

parameters, evaluated at a finite set of time points. Local unidentifiability is formally characterized

by non-trivial null space of SM. Continuous indicators are the skewing angle, M-norm, and L-norm.

• FIMM computes the FIM at a given parameter point and observation times. Local unidentifiability is

formally characterized by a zero curvature of the log-likelihood surface, corresponding to a zero

eigenvalue of the FIM. Continuous indicators are curvatures and relative parameter changes (RPC).
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• Parameter identifiability methods assess whether the parameters of a model are uniquely

determined by the observations. While the success of a model fit can provide some information on

this, it can be valuable to determine identifiability before attempting a fit, or to separate

identifiability from other issues.

• Traditional identifiability methods provide a single categorical (yes/no) answer [1-3] to the question

of identifiability, often assuming idealized data. In many cases this is not very informative, and

identifiability depends on study design (e.g., dose levels or sampling times) and parameter values.

• Indicators on a continuous scale characterizing level of identifiability and taking design limitations

into account can provide more detailed and relevant information to guide model development.
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1) To present new methods that characterize identifiability on a continuous scale;

2) To describe a workflow for employing parameter identifiability analyses in model development;

3) To demonstrate the application of the methods to an intuitive and a complex example.

• Two newly developed methods for parameter identifiability, SMM and FIMM, are implemented [7] in R [8].

• FIMM provides the clearest and most useful answers.

• SMM is an intuitive method that is computationally more efficient than FIMM, but the cut-off between identifiability and unidentifiability is more difficult to establish.

• The availability of the methods, together with the workflow recommendation, facilitate the addition of parameter identifiability analysis to the toolbox of the modeler to diagnose over-

parameterization and assess a model’s suitability in relation to study design.

Conclusion

Methods

PK model: one-compartmental linear PK model with  first 

order absorption, in 3 scenarios (Figure 1):

• A: all parameters are identifiable.

• B: lower absorption rate  identifiability problem.

• C: unidentifiable by adding bioavailability parameter F=1.

MAPK model: mitogen-activated protein kinase (MAPK) model 

(Figure 2)[6]: 3 state variables (all observed), 14 parameters, 

and 3 subjects with (artificially chosen) baselines:

• Subject 1: 100% dephosphorylated (Figure 3).

• Subject 2: 99% dephosphorylated.

• Subject 3: 100% phosphorylated.

Objectives

 Application

 Results

Figure 4: Illustration of the methods and indicators.

(a) SMM: Skewing angle (b) SMM: Minimal parameter relation (MPR)

(c) SMM: Least identifiable parameter (d) FIMM: Curvature and parameter changes
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Table 1: results of SMM and FIMM for the PK model. Scenario A is 
identifiable, C (with bioavailability parameter) is unidentifiable, and B 
(slow absorption) is badly identifiable.
Good identifiability corresponds with high skewing angle (0-1), M-norm 
(0-1), L-norm (0-1) and curvature (0-∞). The minimal parameter rela on 
(MPR)  and relative parameter change (RPC) show the least identifiable 
parameter directions of scenarios B and C to involve 𝐶𝐿, 𝑉, 𝑘  and 
𝐶𝐿, 𝑉, 𝐹 , respectively. MPR and RPC list 𝐹 only for scenario C.

Figure 6: MAPK model. 
Composite model identifiability 
visualization from SMM (skewing 
angle, M-norm, Least identifiable 
parameter) and FIMM 
(curvature), on a log scale.
High values indicate better 
identifiability.

Figure 5: Workflow. struct idble = structurally identifiable; pract idble = practically identifiable; 
vars = variables; cmplx ↑ = increase in model complexity; Y = yes; N = no.

Figure 1: PK model time profiles.
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Figure 2: MAPK model diagram. 
Species Si with phosphorylated 
states pSi; p = phosphorylation; 
d = dephosphorylation; solid 
arrow = mass flow; dashed 
arrow = effect, positive or 
negative as indicated. Figure 3: MAPK time profiles for 

subject 1.


