Extending npde to evaluate Model Averaging: an application to viral dynamic models

S. EL MESSAOUDI^{@1}, A. LEMENUEL-DIOT³, J. GUEDJ¹, E. COMETS¹²

[@]selma.el-messaoudi@inserm.fr, ¹Université Paris Cité, IAME, Inserm, F-75018, Paris, France, ²Université de Rennes, Inserm, EHESP, Irset-UMRS 1085, F-35000 Rennes, France, ³Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel

Context

Viral dynamics models

- Aim to provide a better understanding of viral infections by characterizing pathogenisis and by providing an estimation of treatment effects.
- Are poorly identifiable, and parameters are often fixed to arbitrary values.¹
- Usually focus on one aspect of the disease, due to limited amount of data.²

Model averaging $(MA)^3$

- Offer an alternative to model selection that takes into account uncertainty by combining the results of several candidate models.
- Provide better coverage rates for parameters with acceptable identifiability (relative bias <50%) than model selection.

Objectives

We aim to extend and assess npde for evaluation of a model averaging framework.

Methods

Statistical model

Model for the observations defined as:

 $Y_{ijm} = f_m(t_j, \theta^b_{im}) + g_m(t_j, \theta^b_{im}) \times e_{ijm}$

Computation of MA

- M candidate models
- Weight w_m for model m proportional to AIC

$$v_m = \frac{e^{\frac{-\Delta AIC_m}{2}}}{\sum_{l=1}^{M} e^{\frac{-\Delta AIC_l}{2}}}$$

with $\Delta AIC_m = AIC_m - AIC_{min}$ (l = 1, ..., m)and $AIC_{min} = min_{m=1,\dots,M}(AIC_m)$

• f_m the structural model of model m

• t_i the time of viral load measurement

• θ_{im}^b the vector of individual parameters under model m

• g_m the error model of model m

• e_{ijm} the residual error.

Computation of normalised prediction distribution errors (npde) 4

- Prediction discrepancies defined as the value of F_{ij} (cumulative distribution function (cdf) at observation y_{ij}).
- pd_{ij} approximated with Monte Carlo simulation using the design of an independent validation dataset v: MK

Figure 3: Workflow of the simulation-based study. b: building; v:validation.

Criteria used for evaluation

- 1. Rejection or acceptation of npde according to the global test with a p-value < 0.05.
- 2. Applied to the true model, MA with the true model, MA without the true model and wrong models.

Results

Illustration for one simulation under model C

- npde computed for one simulation under the different models.
- Similar patterns with true, MA or with wrong models (Figure 4).
- Predictive distributions overlayed \Rightarrow discrimination of tested versus true model difficult (Figure 5).

Figure 4: npde calculated with or without MA, with the true model(C) and the other models for a specific repetition.

$$\widehat{pd}_{ij} = \frac{1}{K} \sum_{k=1}^{I} \delta_{ijk} \qquad \Rightarrow \qquad \widehat{pd}_{ij_{MA}} = \sum_{m=1}^{I} w_m \widehat{pd}_{ij_m}$$

- with $\delta_{ijk} = 1$ if $y_{ij}^{sim(k)} < y_{ij}$ and 0 otherwise
- $\widehat{pd}_{ij_{MA}} \sim \mathcal{U}(0,1)$ when $K \to \infty$
- Decorrelation using the inverse of the cdf
- Normalisation

 $\widehat{npde}_{ij_{MA}} = \Phi^{-1}(\widehat{pde}_{ij_{MA}}) \sim \mathcal{N}(0,1)$

• Statistical test: global test based on a combination of the mean, variance and distribution tests with a Bonferroni correction.

Evaluation of the performance of npde to evaluate models obtained by MA

Models used

- Four models used to characterize acute viral infections 5-8, taken as examples to evaluate MA in Gonçalves *et al*⁹.
- Log-transformed viral loads (VL) $Y_{ij} = log_{10}VL.$
- Additive error model on Y_{ij} corresponding to a proportional model on VL.
- \bullet study. True parameters Ψ_m^0 defined in Gonçalves *et al.*⁹.

True parameters Ψ_0^m set for each model.⁹ Figure 1: Schematic representation of the 4 models in this

Evaluation of the performance of npde

	Т	Target-cell limited			Cytotoxic			Virus-killing			Refractory		
Rejection of npde (%)) MA	True model	Others	MA	True model	Others	MA	True model	Others	MA	True model	Others	
Global	27	20	23-32	21	21	19-27	22	28	24-43	24	23	24-34	
Fisher	31	23	23-28	27	28	23-26	27	31	27-42	23	21	19-27	
SW	6	2	2-9	9	5	5-10	8	4	6-12	6	7	4-11	
Wilcoxon	14	13	8-20	11	13	9-12	17	16	10-21	16	15	16-26	

Table 1: Evaluation of MA and single models with external datasets.

- In most cases, true model selected with Model Selection (Table 1).
- Type I error α inflated to around 20% in the different simulations (rejection of the true model) \Rightarrow uncertainty from estimation step not taken into account ?
- Similar rejection rate whether using MA or wrong models \Rightarrow poor discrimination power.

Figure 5: Predictive distribution of the observations of ID=1 at Time=3 with each model. Each panel corresponds to the true model.

Conclusion

• npde successfully extended to MA to provide diagnostic plots.

Figure 2: Envelope of 5th, 50th and 95th percentiles of simulated $log_{10}VL$ in 100 simulated datasets with 30 subjects under each model (see next section)

- However, failure to reject the wrong model and low discriminatory power.
 - Evaluation of (M, $\hat{\Psi}$) instead of (M, Ψ_0) in contrast to previous evaluations.
 - Estimation error not accounted for in the computation of $pd.^{10}$
 - Models poorly identifiable.⁹
- Perspectives: account for estimation error to correct type I error inflation.¹⁰

¹ Guedj *et al. Bul Math Biol* 2007; ² Moore *et al. Bull Math Biol* 2018; ³ Buatois *et al. AAPS* 2018; ⁴ Comets *et al. AAPS* 2021; ⁵Madelain *et al. Nat Commun* 2018; ⁶ Baccam *et al. J Virol* 2006; ⁷ Pawelek *et al. PLoS Comp Biol* 2012; ⁸ Li and Handel *J Theor Biol.* 2014; ⁹Gonçalves *et al.AAPS* 2020; ¹⁰Yano *et al.JPKPD* 2001;

