
Parameter Dataset Model Coefficient of Variability (%)
Daunorubicin Gentamicin Pefloxacin Tobramycin

CL
boot(01-10) model(01-10) 17.9 3.0 7 10.4
boot(01-10) model00 21.1 2.7 6.3 7.8
boot(01-100) model00 20.2 3.0 7.6 6.1

Vss
boot(01-10) model(01-10) 20.8 63.8 19.2 28.4
boot(01-10) model00 23.8 5.6 11 12.7
boot(01-100) model00 25.1 19.6 14.5 13.6

When modules were evaluated separately, the consistency (the cases when the
bootstrap was the same model as the original model) of the Structural model selection
was higher than IIV and RUV modules.
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Introduction
The development of a population pharmacokinetic (PK) model is a challenging and
time-consuming procedure. There are several automatic approaches for model building
[1-4]. A fully Automatic Model Development tool (AMD tool) has been developed to
cover all the components of PK modeling [5]. The AMD tool can potentially automatize
model development workflow, and it is integrated into the Pharmpy/Pharmr software
[6]. The aim of this work is to learn about model selection variability and its
consequences using the AMD tool and its model selection modules [5-8].

Methods
The AMD tool was applied to 4 clinical PK datasets of intravenously administered drugs
of Daunorubicin, Gentamicin, Pefloxacin, and Tobramycin [9-11]. These datasets were
used to generate 10 bootstrapped datasets each. The AMD tool (Pharmr version 0.78)
was applied with the 3 modules for the model selection in the following order:
• Structural model
• Inter-Individual Variability (IIV) model
• Residual Unexplained Variability (RUV) model

Figure 1. A workflow of generating final models from the original dataset and bootstrapped datasets using the AMD tool.

Objectives
Assessing the effect of the variability of input data on the selection of the final model:
Part I to compare the final models from the original data and bootstrap datasets.
Part II to learn about parameter variability in the presence and absence of model

selection variability.
Part III to assess bootstrap-generated models on the original dataset.

Results
Part I
The goodness of fit was getting better (lower BIC) after each module. The variability of
bootstrap-generated models was evaluated by the number of differences in selected
models compared to the original model. The final models based on bootstrap datasets
usually had at least one difference in model selection.

Conclusions
Part I Variability in the model selection of AMD modules
• lowest: structural model selection (the first in a decision tree)
• highest: IIV model selection.

Part II Effect of model selection on overall parameter uncertainty
• varied between parameters: low for CL and high for Vss.

Part III Bootstrap-generated models
• lower BIC when compared to the original model for the Tobramycin dataset.

The pipeline of generating final models from bootstrapped datasets can serve multiple
purposes in the understanding of model development and the final model properties.

Part II
The coefficient of variability (CV) of parameter estimates from 10 bootstrap results was
calculated, and the estimation of typical values of the clearance (CL) showed a similar
CV regardless of the inclusion of model selection or not. For the typical value of the
volume of distribution (Vss), CV in Tobramycin and Gentamicin datasets was
considerably higher with model selection variability than without.

Part III
The original model and bootstrap-generated models were compared in terms of BIC by
parameter estimation of models using the original dataset. When bootstrap-generated
models were applied to original data, with re-estimation, they were found to improve
on the original model in 3 cases out of 40, all for the Tobramycin dataset (the largest
decrease in BIC was 11.1).

Table 1. Evaluation of similarity at each AMD module. The percentage similarity was defined by the percentage of having the same
selected model as in the original model for bootstrap-generated models (out of 10) at each module separately.

Table 2. Coefficient of variability for estimation of Clearance (CL) and Volume of Distribution (Vss). Parameters were estimated by
the original model (model0) or by all bootstrap-generated models (model1-10) using bootstrap datasets. The original model was
additionally assessed with 100 bootstrap datasets.

Figure 4. The comparison of the goodness of fit by parameter estimation using the original dataset for the original model
(model00) and bootstrap-generated models (model01-model10)

Figure 2. The change of goodness of fit (dBIC value) after each AMD module. dBIC values were calculated relative to the BIC value
of the starting model.

Figure 3. A categorical scoring of differences of bootstrap-generated final models (model01-model10) in comparison to the final
model from original data (model00).

Datasets:

Percentage Similarity 
AMD Modules (%)

Structural IIV RUV

Daunorubicin 100 0 90
Gentamicin 80 70 30
Pefloxacin 100 40 20
Tobramycin 60 10 50

Average: 85 30 47.5
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