A fully hierarchical Bayesian approach to sequentially update population parameter uncertainty in MIPD

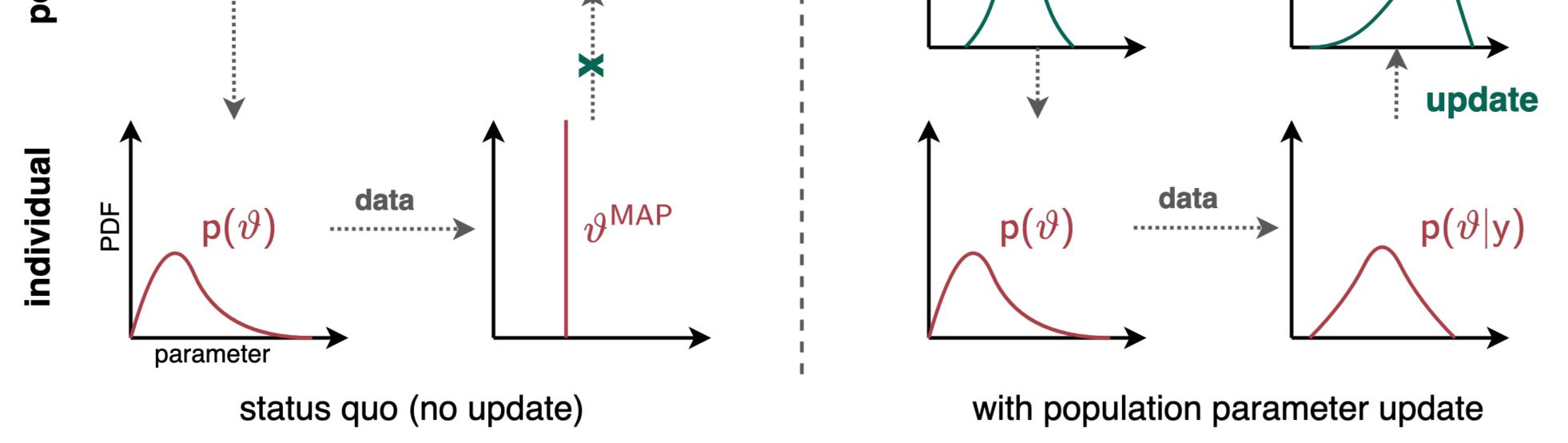
<u>Franziska Thoma^{1,2}</u>, Manfred Opper¹, Charlotte Kloft³, Jana de Wiljes¹, Niklas Hartung¹, Wilhelm Huisinga¹

¹ University of Potsdam, Institute of Mathematics/Institute of Biochemistry and Biology; Potsdam, Germany ² PharMetrX Graduate Research Training Program; Berlin/Potsdam, Germany ³ Freie Universität Berlin, Institute of Pharmacy; Berlin, Germany

Modelling population parameter uncertainty in Model-informed precision dosing (MIPD) **Bayesian forecasting in MIPD Full Bayesian method** opulation -MLE no update p(z|y **p(z)**

Background

- MIPD leverages population information from prior study data to predict individual data
- Can we introduce additional patient information from clinical practice to improve the existing model?



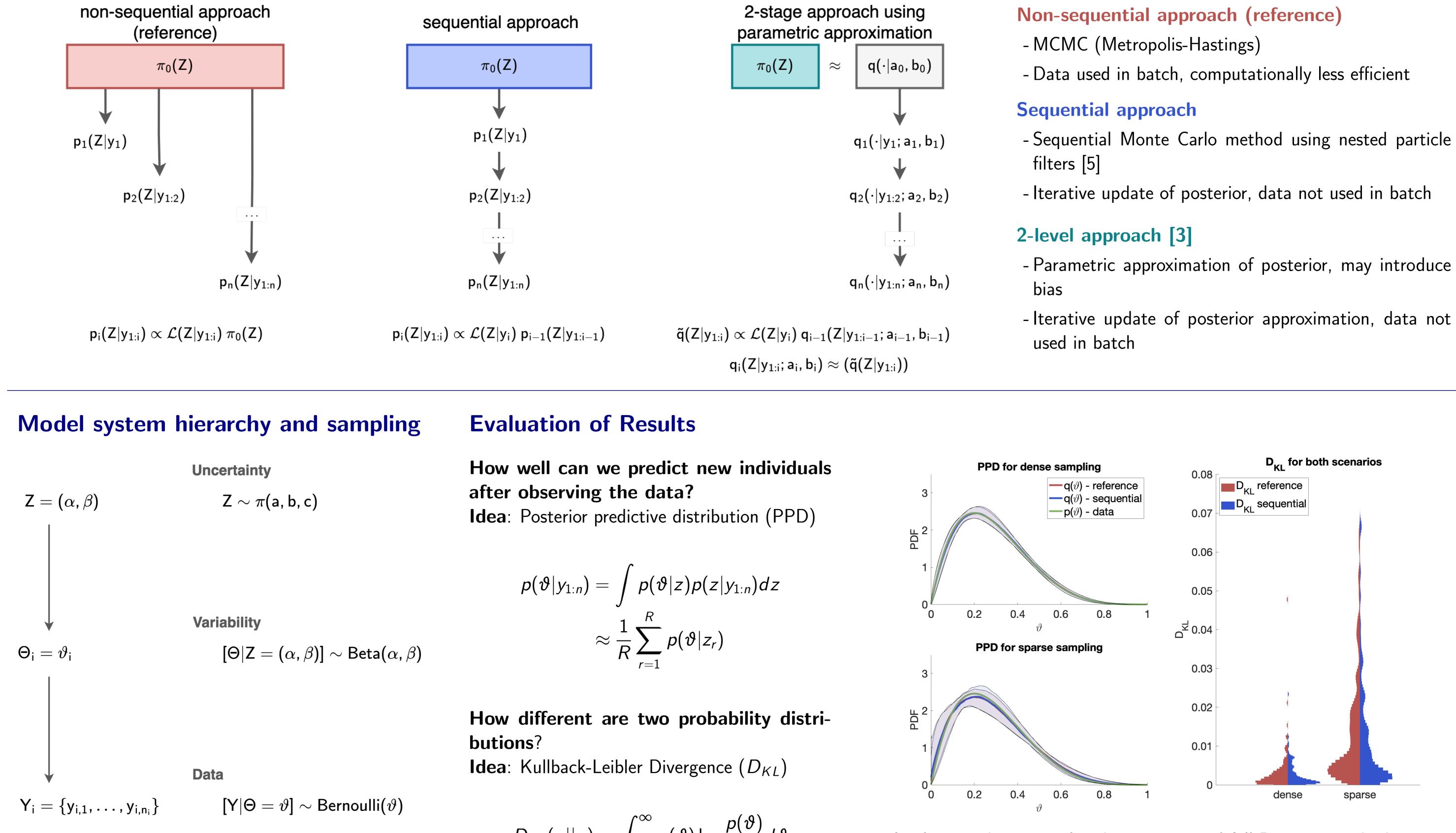
Challenge

- Update prior information as data is observed during MIPD
- Present approaches for continued learning [6,7] do not combine all given and incoming information (prior and data) to update the population prior

Idea

Use Bayesian hierarchical modelling to represent and update uncertainty in the prior parameters

Sequential and non-sequential Bayesian hierarchical methods



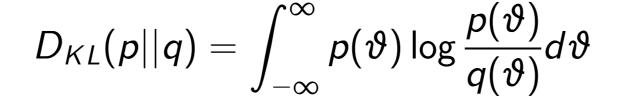
- Sequential Monte Carlo method using nested particle

Simple hierarchical model system to test the approaches.

Sampling scenarios with n = 1000 individuals:

- dense: $n_i = 10$

```
- sparse: n_i = 2
```



Generate posterior predictive distribution $q(\vartheta)$ of individuals and compare to data-generating distribution $p(\vartheta)$.

- Implemented sequential and non-sequential full Bayesian methods
- Sequential model is as good as non-sequential model

- Both dense and sparse sampling scenario show low divergence in the PPD

Conclusion: sequential fully Bayesian hierarchical models have potential to facilitate continued learning on real-world population without loss of information or need for storage of sensitive patient data.

References

[1] Keizer RJ et al., CPT:PSP (2018). 7(12), 785-787 [2] Polasek TM et al., Expert Review of clinical pharmacology (2018). 11(8), 743-746 [3] Maier C et al., CPT:PSP (2022). 11.2, 185-198 [4] Maier C et al., CPT:PSP (2020). 9.3, 153-164 [5] Chopin N et al., Journal of the Royal Stat. Soc.: Series B (2013). 75.3, 397-426 [6] Hughes JH et al., CP&T (2021). 109(1), 233-242 [7] Hughes JH et al., CPT:PSP (2021). 10, 1150-1160

Acknowledgements

This research has been partially funded by the Deutsche Forschungsgemeinschaft (DFG)- Project-ID 318763901 - SFB1294.

Contact

For additional information, please contact: **franziska.thoma@uni-potsdam.de**

