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Modelling population parameter uncertainty in Model-informed precision dosing (MIPD)

Background

-MIPD leverages population information from prior study
data to predict individual data

- Can we introduce additional patient information from
clinical practice to improve the existing model?

Challenge

- Update prior information as data is observed during
MIPD

- Present approaches for continued learning [6,7] do not
combine all given and incoming information (prior and
data) to update the population prior

Idea
Use Bayesian hierarchical modelling to represent and up-
date uncertainty in the prior parameters

Sequential and non-sequential Bayesian hierarchical methods

Non-sequential approach (reference)

-MCMC (Metropolis-Hastings)

- Data used in batch, computationally less efficient

Sequential approach

- Sequential Monte Carlo method using nested particle
filters [5]

- Iterative update of posterior, data not used in batch

2-level approach [3]

- Parametric approximation of posterior, may introduce
bias

- Iterative update of posterior approximation, data not
used in batch

Model system hierarchy and sampling

Simple hierarchical model system to test the ap-
proaches.
Sampling scenarios with n = 1000 individuals:

- dense: ni = 10

- sparse: ni = 2

Evaluation of Results

How well can we predict new individuals
after observing the data?
Idea: Posterior predictive distribution (PPD)
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How different are two probability distri-
butions?
Idea: Kullback-Leibler Divergence (DKL)
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Generate posterior predictive distribution q(#)
of individuals and compare to data-generating
distribution p(#).

Results and Outlook

- Implemented sequential and non-sequential full Bayesian methods

- Sequential model is as good as non-sequential model

- Both dense and sparse sampling scenario show low divergence in the PPD

Conclusion: sequential fully Bayesian hierarchical models have potential to
facilitate continued learning on real-world population without loss of infor-
mation or need for storage of sensitive patient data.
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