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Introduction PK simulation study
Non linear mixed effects models (NLMEM): powerful tool
to model longitudinal data
θ = c(µ, β,Ω, a, b): vector of population parameters to
estimate (µ: fixed effects , β: covariate effects, Ω: variance
matrix of random effects, a,b: error parameters)

Frequentist paradigm:
• Uncertainty of the maximum likelihood estimator (MLE) can

be computed asymptotically through the standard errors
(SE) based on the Fisher Information Matrix (FIM), and
confidence intervals are built under a gaussian hypothesis
(Asympt)

• When working at finite distance, Asympt underestimates
the SE of NLMEM [1,2]

• Bootstrap or Sampling Importance Resampling (SIR) [3]
methods have been proposed

• Sampling methods computationally heavy

Ueckert et. al. [4] proposed to compute uncertainty in a
Bayesian paradigm following the frequentist inference:
• Under some regularity conditions on the prior, the limit

distributions of the MLE and the maximum a posteriori
(MAP) estimator are equivalent (Bernstein-von Mises
theorem)

• Posterior distributions are used to compute uncertainty, e.g.
confidence intervals using quantiles

→ Method implemented via Hamiltonian Monte Carlo
algorithm in Stan (Post) [5,6]

Objective: To borrow from the Bayesian paradigm to
estimate uncertainty through posterior distributions in NLMEM
at finite distance, in parallel of the frequentist estimation
in SAEM

Methods
In the saemix R package [7], integration of a Bayesian
step based on the Metropolis Hastings (MH) algorithm
(SAEM_MH) [8]

At each iteration k of SAEM at convergence phase, after
simulation step/stochastic approximation/maximisation
step
Bayesian step:
Set a prior distribution p(.) on θ
θMH

0k = θk the current frequentist estimation of SAEM
For mk = 1, ...,Mk:
• Draw θmk

in a kernel distribution q(.)
• θmk

is accepted with probability α:

α = min
(

1,
ll(θmk

, ψ̄mk
)p(θmk

)q(θMH
mk−1)

ll(θMH
mk−1, ψ̄

MH
mk−1)p(θMH

mk−1)q(θmk
)

)

with ψ̄mk
the mean of z = 50 samples drawn from the

conditional distribution P(ψmk
|y, θmk

)
Keep the last iteration θMH

Mk
of each MH chain to get a chain

of K2 samples

Parameters to be calibrated:
• Mk, here Mk = 100
• Prior distribution, here p = N (θp, sdp) with θp the simulated

values of θ and a coefficient of variation sdp/θp=30% for µ
and 50% for β, Ω, a and b

• Kernel distribution, here q = N (θq, sdq), θq = θk and sdq =
infq × FIM−1

k , with infq = 1, 1.5, 2

• Inspired by theophylline data
• Proportional error model (b)
• Treatment groups of equal size

C(t) = dose

V

ka

ka − Cl
V

e(ClV t−kat)

ka
µka = 1.5
βka = 0
ωka = 0.11

Cl/V

µCl = 0.04
βCl = log(1.25)
ωCl = 0.22

µV = 0.5
βV = log(1.25)
ωV = 0.11

0

2

4

6

0 5 10 15 20 25
Time

C
on

ce
nt

ra
tio

n

Two designs of 1000 simulated datasets:
Rich N=150 patients n=10 points
Sparse N=12 n=3

Evaluation:
• 10 population parameters (βka estimated)
• 95% coverage rates (CR) and their confidence intervals
• Acceptation rates (AR)
• Comparison with Asympt, SIR and Post
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Method Rich (x) Sparse(o)

Asympt . .

SIR . .

Post . .

SAEM_MH 42.4 24.3

SAEM_MH_inf1.5 32.5 20.3

SAEM_MH_inf2 23.6 16.1

Acceptation rates

On N=150 and n=10 (x):
• All methods provide CR within the target range
On N=12 and n=3 (•):
• With Asympt, SIR and SAEM_MH, CR systematically below the

target
• Post gives CR below or above the target
• SAEM_MH_2, with inflated kernel variance by a factor 2, gives

more controlled CR
In both cases, AR of MH between 15% and 40%: seems reasonable
given the number of dimensions
Problem : when simulating additional data with increased variability
and/or strong correlations, AR dropped
SAEM_MH seems promising but needs further investigation on more
challenging settings to higher the AR

Alternatives to the current MH algorithm currently investigated:
• Use AR as a guide for adaptive infq on sdq
• Adaptive kernel variance from litterature [9]
• Block sampling of fixed effects and variance parameters separately
• Conditional univariate sampling (Gibbs sampling) with or without

variance inflation for each parameter separately
• Random walks

NEWS-2 modelling
• Discovery trial [10] (promoted by Inserm, PI: Pr Florence Ader):

European clinical trial aiming to evaluate antiviral drugs for the
treatment of Covid19

• Patients hospitalised for Covid19 followed for 29 days (patients
recovering left the hospital but were followed up at day 15 and
day 29)

• NEWS-2 [11]: composite score ranging from 0 (best)
to 20 (worst), used in emergency medicine to assess the
clinical status of patients

• Our objective: model the evolution of NEWS-2 and test
for a treatment effect between:
– the standard of care (SoC, N=408 patients) arm
– the SoC + remdesivir (N=402 patients) arm

Bateman function to model the typical evolution of the
score considered as continuous:

NEWS2(t) = N0 + A λ2 (t + Tlag)e−λ(t + Tlag)
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• Tlag, λ and A follow a log-normal distribution
• N0 follows a logit-normal distribution between 0 and 3
• log-transformation of the data and model as

log(1+NEWS2) to account for the score being
bounded by 0, with a constant error (a) model

RSE (%)
Parameter Estimate Asympt SIR Post MH
µTlag (days) 2.85 10 9 7 13
βage(Tlag) 0.50 23 23 24 13
βremde(Tlag) 0.13 81 79 71 21
µA (days) 106.60 9 7 1 7
βage(A) 0.56 18 18 16 6
βremde(A) -0.02 566 441 2084 12
µN0 0.18 19 19 16 29

βcardiac(N0) 0.21 174 175 196 57
βdiabetes(N0) 1.01 38 40 52 42
µλ (days−1) 0.20 7 6 2 6
βage(λ) -0.53 16 16 15 5
βremde(λ) -0.03 245 151 233 12
ωTlag 1.11 5 5 6 4
ωA 1.28 3 3 3 3
ωN0 2.86 6 6 8 5
ωλ 1.05 3 3 4 3

rT lag,λ 0.83 10 10 2 14
rT lag,A -0.90 10 11 3 15
rA,λ -0.97 8 8 0 9
a 0.25 1 1 1 2
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→ With SAEM_MH method:
• AR were critically low due to the challenging setting
• Calibration is needed to use SAEM_MH on this data

Conclusion
• As expected, Asympt is degraded at finite distance
• SIR does not improve the results
• Post gives CR above the target on sparse design and

needs further work to investigate suitable priors
• SAEM_MH also needs further investigation for the

calibration of the prior and kernel distributions on
challenging settings
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