KU LEUVEN

Population pharmacokinetic analysis of amoxicillin in postpartum Göttingen Minipig plasma and milk: a contribution from the ConcePTION project

Miao-Chan Huang¹, Julia Macente¹, Nina Nauwelaerts¹, Yeghig Armoudjian², Rodolfo Hernandes Bonan², Domenico Ventrella³, and Pieter Annaert^{1,2}

(1) Drug delivery and disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; (2) BioNotus, Niel, Belgium; (3) Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.

Introduction

- The knowledge gap regarding the extent of medicine milk transfer has existed for most medicines approved for human use¹⁻². The amount of the drug in milk an infant is exposed to via breastfeeding is crucial information for assessing the safety of medicines used in lactating women.
- □ The Göttingen Minipig (GMP) was considered bio-relevant to humans regarding studying the milk transfer of medicine(s)³.
- Since amoxicillin (AMX) is a broad-spectrum antibiotic prescribed in humans and GMPs, it can be an example for developing a lactation/milk-transfer study

Methods	Results				
Figure 1. Animal study design Table 1. GMP characteristics			Figure 3. Flow chart of data		
AMX (Clamoxyl [®] RTU) 7 mg·kg ⁻¹ IM once daily		Mean ± SD	Min. – Max.	inclusion & exclusion	
	Bodyweight (kg)	43.2 ± 5.19	34 – 48	123 plasma and 85 milk samples in GMPs ($n = 3$)	
Delivery Week 1 Week 2 Week 3 Week 4	Day 1 or earlier	43.0 ± 7.81	34 – 48	Included Excluded	
Delivery week i week 2 week 5 week 4 Day 2 onwards – sparse sampling (0 - 4 plasma/milk samples)	Day 3 / 6	40.3 ± 4.92	34 – 46	Concentration from • BLQ (10 ng/mL)	
	Days postpartum on Day 1	7.00 ± 1.00	6 – 8	114 plasma and 813 plasma (pre-dose)	
 Mon & Fri: pre-dose and 2 hours post-dose 	Offspring litter size	8.33 ± 1.25	7 - 10	milk quantifiable& 4 milk samplessamples• Abrupt illness	
 Tue & Thu: pre-dose, 2, 4, an 8 hours post-dose Day 1 – intensive sampling (11 plasma samples) 				BLQ, below the lower limit of quantification (10 ng/mL) 7 plasma samples (1 BLQ)	

PopPK analysis

- Nonlinear mixed-effects modeling approach using Monolix[®] 2021R1
- □ Stepwise Covariate Analysis
 - Forward selection: OFV ↓ >3.84 (p <0.05)
 Backward elimination : OFV ↑ >6.63 (p <0.01)

Figure 4. Goodness-of-fit plots for plasma (A to D) and milk (E to H)

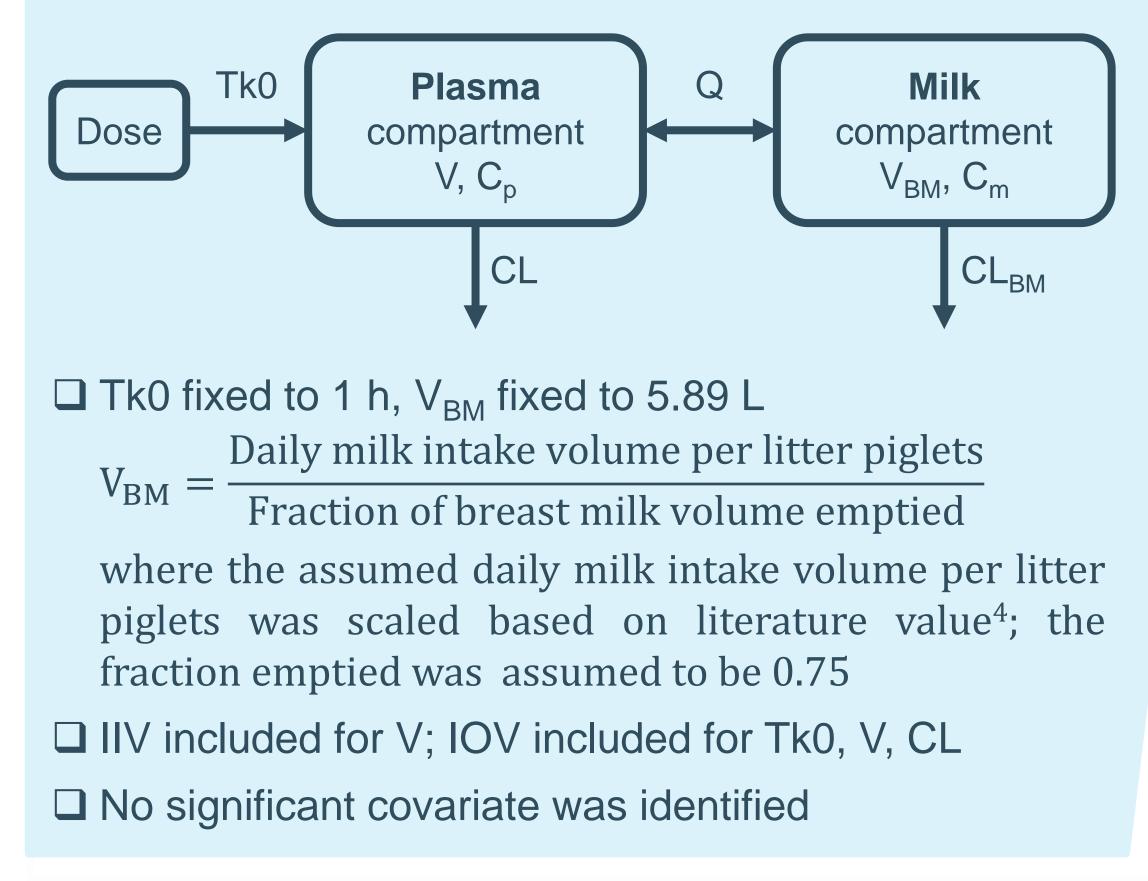



Figure 2. AMX PK model structure

Simulation-based endpoints estimation

The final model was used to simulate a virtual GMP population, where the median simulated PK profiles were used to calculate the following endpoints in GMP.

Table 2. Milk-to-plasma (M/P) ratio and infant dose of AMX in GMP

Observed v	alue Simulated val	ue Simulation / C	hservation

- Milk to plasma ratio = $\frac{AUC_{\tau,Milk}}{AUC_{\tau,Plasma}}$ Daily infant dose (DID, mg · kg⁻¹ · day⁻¹) $= \frac{AUC_{\tau,Milk}}{\tau} \times Daily milk intake volume$ (n = 1000)
- where τ was 24 h, and the assumed daily milk intake volume in a GMP piglet was 1072 mL \cdot kg⁻¹
- $\Box \text{ Relative infant dose (RID, \%)} = \frac{\text{Daily infant dose}}{\text{Daily maternal dose}} \times 100\%$

where the daily maternal dose in GMP was 7 mg \cdot kg⁻¹

Reference

[1] Fromina YY. et al. J Matern Fetal Neonatal Med. 2023;36(1):2163626.
[2] Mazer-Amirshahi M. et al. Am J Obstet Gynecol. 2014;211(6):690.e1-690.e11.
[3] Ventrella D. et al. Animals. 2021;11(3):714.
[4] Skok J. et al. Acta Agric Scand A Anim Sci. 2007;57(3):129-135.
[5] Nauwelaerts N. et al. Pharmaceutics. 2023; 15(5): 1469.

M/P ratio	0.153 ± 0.0778	0.139	0.906
DID (mg·kg ⁻¹ ·day ⁻¹)	0.161 ± 0.0861	0.106	0.662
RID (%)	2.30 ± 1.23	1.52	0.662

Observed values were expressed as mean \pm standard deviation; simulated values were calculated based on the median profile in the dosing interval with the highest plasma AUCT.

Conclusion

- ✓ The developed popPK model well described the AMX plasma and milk levels in GMPs.
- ✓ The simulated M/P ratio of AMX in GMPs was close to the observed value in GMPs and the predicted value (0.15) in the human lactation physiologically-based PK model⁵.

Acknowledgement This work is supported by the EU/EFPIA Innovative Medicines Initiative Joint Undertaking ConcePTION grant No. 821520, Taiwan Scholarship Programme, and Research Foundation – Flanders (1S50721N). The research leading to these results was conducted as part of the ConcePTION consortium. This abstract only reflects the personal views of the stated authors.

Contact 🖂 miao-chan.huang@kuleuven.be