Predicting individual disease progression including parameter uncertainty in rare neurodegenerative diseases: the example of Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS)

NIELS HENDRICKX^{@,1}, FRANCE MENTRÉ¹, REBECCA SCHÜLE^{3,4}, CYNTHIA GAGNON⁵, ARCA STUDY GROUP, EVIDENCE-RND CONSORTIUM,

ANDREAS TRASCHÜTZ^{3,4}, MATTHIS SYNOFZIK^{3,4}, EMMANUELLE COMETS^{1,2}

[@]niels.hendrickx@inserm.fr, ¹Université Paris Cité, IAME, Inserm, F-75018, Paris, France, ²Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35000, Rennes, France., ³Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Germany, ⁴German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany, ⁵Centre de recherche du CHUS et du Centre de santé et des services sociaux du Saguenay–Lac-St-Jean, Faculté de médecine, Université de Sherbrooke, Québec, Canada

Context

- Genetic cerebellar ataxias are progressive ultra-rare neurodegenerative diseases affecting the cerebellum, causing debilitating impairment of gait, balance, speech and fine motor skill
- Over a hundred ataxia diseases are autosomal-recessive cerebellar ataxias (ARCA), often starting in early childhood or early adulthood
- We use Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS), one of the more common ataxias, as a case study
- There is an urgent need to develop robust statistical methodology that allows to predict progression trajectories¹
- We develop a disease progression model to describe the individual evolution of the Scale for

Method

Individual predictions

- Select all patients with last SARA < 20(70)
- Compute predicted SARA and width 90% Prediction Interval (PI) at 5 years after last visit
- without Compare values with and population parameter uncertainty

the Assessment and Rating of Ataxia (SARA) score versus Time Since Onset of symptoms (TSO) and its uncertainty

Modelling SARA score

Data description

- ARCA Registry²: longitudinal study with 173 ARSACS patients (1-7 visits, median 2)
- Core dataset including age, age of onset (AoO) as reported by the patients and SARA score
- Missing AoO imputed to the median AoO in the population (2 years)
- Covariates at inclusion: BMI, INAS score (Inventory of Non Ataxia Signs), genotype of the mutation (missence or loss of function), sex and Age of Onset

Non linear mixed effect model

- Structural model: 4 parameter logistic function
- $f(TSO) = S_0 + (S_0 S_m) \times \frac{1}{1 + \frac{e^{\alpha TSO} 1}{e^{\alpha T_{50} 1}}}$
- lognormal constant model error diagonal distribution for parameters, covariance matrix, covariate effect: log parameter, (and log linear on covariate for continuous)

Continuous Covariate	median	25-75%	nb missing
BMI ($kg.m^{-2}$)	24.4	21.4-29	36
INAS	7	5-8	67
AoO (yr)	2	1-6	22
Categorical covariate	Amount	percentage	nb missing
construct of mutation	115 loss	80%	30
genotype of mutation	of function	02/0	52
AoO 0-7	131	87%	-
AoO 8-14	7	4.5%	-
AoO 15-40	13	8.5%	-
Sex	92 females	52%	0

• Many covariates have missing values = a specific approach is used⁴

1 - Base Model+ Multiple Imputation	2 - Univariate selection

Figure 2: Example of individual predictions with population parameter uncertainty (median + 90% PI) and individual parameter estimates (estimated as the median + RSE (%) of conditional distributions)

Median (90% PI) increase in SARA score at 5 years of +2.9 points (0.33-5.1)

Results

Implementation

• Parameter estimation performed with the SAEM algorithm (saemix⁵ in R 4.2.0⁶).

Results

Model	Withou	it Covariates	With a	covariates
Parameter	Value	RSE(%)	Value	RSE(%)
S_0	6.9	11	8.1	9
β_{male,S_0}	-	-	-0.28	50
S_m	35.8	2	34.3	2
β_{male,S_m}	-	-	0.08	38
α (yr^{-1})	0.11	13	0.12	12
T_{50} (yr)	36.8	3	38.1	3
$\beta_{AOO>15,T_{50}}$	-	-	-0.43	20
ω_{S_0}	0.27	37	0.19	42
ω_{lpha}	0.59	19	0.58	22
$\omega_{T_{50}}$	0.21	11	0.16	11
σ	1.92	6	1.86	6

uncertainty

Figure 4: Violin plot of the predicted SARA score and its width at 5 years, and its ratio with/without uncertainty

- Median (90% PI) SARA score/width at 5 years of 13/7.4 (7.3-22)/(4.7-12)
- Population parameter uncertainty: little impact, likely due to the small RSE in the model

Conclusion

- Disease progression in ARSACS could be described using a logistic growth function. The score at onset of disease (S_0) /maximum SARA score (S_m) was estimated at 8.1/34.3 for females, 6.1/37.2 for males. Model predicts faster progression for late onset patients
- We used a method to select a covariate model with Multiple Imputation, accounting for missing values in covariates. In the final model, none of the selected covariates had missing values
- Parameter uncertainty did not change the predicted individual SARA score and width of PI
- Individual predictions while accounting for parameter uncertainty will be implemented in smaller populations in the registry (and most likely with higher RSE due to the small

• 8 covariates selected as pre-selected, 3 final covariates selected during first forward (none have missing values)

Figure 1: Spaghetti plot with simulations, median + 90% Simulation Interval, stratified by covariates

amount of patients)

¹ Synofzik et al. *J Nucleic Acid Ther* 2022; ² Traschütz et al. *Front Neurol* 2021; ³ van Buuren et al. *J Stat Soft* 2011; ⁴ Meng et al. *Biometrika* 1992; ⁵ Comets et al. *J Stat Soft* 2017; ⁶ R core team et al. *R Foundation for Statistical* Computing 2022. ⁷ Johansson et al. AAPS J 2013.

Acknowledgements

This work was supported by the European Joint Programme on Rare Diseases (EJPRD) WP20 Innovation Statistics project "EVIDENCE-RND") and the EJPRD PROSPAX consortium (DFG, German Research Foundation, No 441409627), both under the EJP RD Grant Agreement (n°825575). It was further supported, in part, by the Clinician Scientist program "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung.

