
Predicting individual disease progression including parameter uncertainty in rare neurodegenerative diseases: the example
of Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS)

Niels Hendrickx@,1, France Mentré1, Rebecca Schüle3,4, Cynthia Gagnon5, ARCA Study Group, EVIDENCE-RND consortium,

Andreas Traschütz 3,4, Matthis Synofzik3,4, Emmanuelle Comets1,2

@niels.hendrickx@inserm.fr, 1Université Paris Cité, IAME, Inserm, F-75018, Paris, France, 2Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35000, Rennes, France.,
3Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany, 4German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany,

5Centre de recherche du CHUS et du Centre de santé et des services sociaux du Saguenay–Lac-St-Jean, Faculté de médecine, Université de Sherbrooke, Québec, Canada

Context
• Genetic cerebellar ataxias are progressive ultra-rare neurodegenerative diseases affecting

the cerebellum, causing debilitating impairment of gait, balance, speech and fine motor
skill

• Over a hundred ataxia diseases are autosomal-recessive cerebellar ataxias (ARCA), often
starting in early childhood or early adulthood

• We use Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS), one of the
more common ataxias, as a case study

• There is an urgent need to develop robust statistical methodology that allows to predict
progression trajectories1

• We develop a disease progression model to describe the individual evolution of the Scale for
the Assessment and Rating of Ataxia (SARA) score versus Time Since Onset of symptoms
(TSO) and its uncertainty

Modelling SARA score
Data description

• ARCA Registry2: longitudinal study with 173 ARSACS patients (1-7 visits, median 2)
• Core dataset including age, age of onset (AoO) as reported by the patients and SARA score
• Missing AoO imputed to the median AoO in the population (2 years)
• Covariates at inclusion: BMI, INAS score (Inventory of Non Ataxia Signs), genotype of the

mutation (missence or loss of function), sex and Age of Onset
Non linear mixed effect model

• Structural model: 4 parameter logistic
function

• f (TSO) = S0 + (S0 − Sm) × 1
1+eαTSO−1

eαT50−1
• constant error model, lognormal

distribution for parameters, diagonal
covariance matrix, covariate effect:
linear on log parameter, (and log
covariate for continuous)

Continuous Covariate median 25-75% nb missing
BMI (kg.m−2) 24.4 21.4-29 36
INAS 7 5-8 67
AoO (yr) 2 1-6 22

Categorical covariate Amount percentage nb missing

genotype of mutation 115 loss
of function 82% 32

AoO 0-7 131 87% -
AoO 8-14 7 4.5% -
AoO 15-40 13 8.5% -
Sex 92 females 52% 0

Building covariate model via multiple imputation
• Many covariates have missing values = a specific approach is used4

no
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Second
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7- Parameter estimate + RSE

final IIV
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Parameter estimate =
Rubin's Rules
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case bootstrap on each
imputed data sets (200

samples)

Final Model

no

Multiple Imputation7 
using MICE3

Implementation
• Parameter estimation performed with the SAEM algorithm (saemix5 in R 4.2.06).

Results

Model Without Covariates With covariates
Parameter Value RSE(%) Value RSE(%)
S0 6.9 11 8.1 9
βmale,S0 - - -0.28 50
Sm 35.8 2 34.3 2
βmale,Sm

- - 0.08 38
α (yr−1) 0.11 13 0.12 12
T50 (yr) 36.8 3 38.1 3
βAOO>15,T50 - - -0.43 20
ωS0 0.27 37 0.19 42
ωα 0.59 19 0.58 22
ωT50 0.21 11 0.16 11
σ 1.92 6 1.86 6

• RSE computed with case bootstrap (200
samples)

• 8 covariates selected as pre-selected,
3 final covariates selected during first
forward (none have missing values)
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Figure 1: Spaghetti plot with simulations, median + 90%
Simulation Interval, stratified by covariates

Individual predictions
Method

Final Model

Draw 100 samples from
conditional distribution

for each patient for each
imputed data set

Compute SARA over
TSO for each

individual parameter
vector

Pool all responses
per patient

Draw population
parameter vector from

case boostrap distribution
(200 times per imputed

data set)

Accounting for population
parameter uncertainty

• Select all patients with last SARA< 20
(70)

• Compute predicted SARA and width
90% Prediction Interval (PI) at 5 years
after last visit

• Compare values with and without
population parameter uncertainty

Results

S0 = 7.8 (19)

a = 0.18 (56)

T50 = 44 (9)

S0 = 8.1 (22)

a = 0.08 (100)

T50 = 38 (16)
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Figure 2: Example of individual predictions with population
parameter uncertainty (median + 90% PI) and individual
parameter estimates (estimated as the median + RSE (%)
of conditional distributions)

• Parameter standard deviation depends
on the number of observation (ex:
patient 120) but the size of the PI is more
influenced by the fact that TSO is close
to the inflexion point (T50 = 44)

• Median (90% PI) increase in SARA score
at 5 years of +2.9 points (0.33-5.1)
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Figure 3: Distribution of the predicted SARA score and its
90% PI at 5 years, with and without population parameter
uncertainty
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Figure 4: Violin plot of the predicted SARA score and its
width at 5 years, and its ratio with/without uncertainty

• Median (90% PI) SARA score/width at 5 years of 13/7.4 (7.3-22)/(4.7-12)
• Population parameter uncertainty: little impact, likely due to the small RSE in the model

Conclusion
• Disease progression in ARSACS could be described using a logistic growth function. The

score at onset of disease (S0)/maximum SARA score (Sm) was estimated at 8.1/34.3 for
females, 6.1/37.2 for males. Model predicts faster progression for late onset patients

• We used a method to select a covariate model with Multiple Imputation, accounting for
missing values in covariates. In the final model, none of the selected covariates had missing
values

• Parameter uncertainty did not change the predicted individual SARA score and width of PI
• Individual predictions while accounting for parameter uncertainty will be implemented in

smaller populations in the registry (and most likely with higher RSE due to the small
amount of patients)
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