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Motivation

Vine copulas [2] Results

Kullback-Leibler (KL) divergence [7]

Vine copula fits capture nonlinear dependencies (3D example)
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Virtual populations are used to assess the impact of inter-individual variability on
drug exposure and effect. While mechanistic approaches exist for some variables
(e.g., lean body weight-based scaling [1]), empirical methods are required in
general. Vine copulas can be used as a modelling tool to capture nonlinear
relationships and which works for high-dimensional data [2,3].

Open question: Quantitative goodness-of-fit evaluation.

In the here-presented work, we evaluate vine copula models fitted to two high-
dimensional clinical datasets in terms of Kullback-Leibler divergence.
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𝑝 "= unknown data-generating density
𝑞 "= density of surrogate model
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Density-based:
• Accurate when applicable
• Unfeasible for dimensions 𝑑 ≫ 5

Nearest-neighbour-based:
• Better scaling with dimension 𝑑
• Need to correct finite sample bias [8]

Estimation of KL divergence

𝐷&'(𝑝||𝑞) "= how much information 
is lost when using 𝑞 instead of 𝑝

Copulas separate marginals and dependencies

Vines organize pair copula decompositions

• Two-stage modelling procedure: first fit marginals, then a copula
• Multivariate copula (e.g. Gaussian) or pair copula decomposition (vines)
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conditional pair copulaedge in vine 𝒱

• Vine copulas are more accurate than multivariate Gaussian distributions or 
copulas

• Lower 𝐷!" for MIMIC compared to NHANES (hypothesis: more variability 
smoothens distributions)

• Categorical data are challenging (no functional R implementation available)

Vine copula models have lowest KL divergence
• Pair copulas from different parametric families can be combined
• Selection of vine structure based on pairwise concordance
• Efficient estimation of and simulation from vine copula models [6]

General population: NHANES 2009-2012 [4]

Critically ill population: MIMIC-IV [5]

• 𝑑 = 10 continuous physical measurements / health variables
• 𝑛 = 1776 individuals (selection of adults and further processing)

• 𝑑 = 30 continuous physical measurements / health variables
• 𝑛 = 4799 individuals (selection of adults and further processing)
• Heterogeneous, admitted to the ICU with different conditions
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Example (𝒅 = 𝟒): Corresponding vine

Pair copula decomposition

split marginals / dependencies  

add vine structure

use more flexible pair copulas

Multivariate Gaussian distribution

Best parametric vine copula

Gaussian vine copula

Multivariate Gaussian copula
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Datasets for evaluation
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