

PAGE 2023 | Poster Irene Hernández-Lozano irene.hernandez-lozano@farmaci.uu.se

Translational pharmacokinetic-pharmacodynamic (PKPD) modelling of apramycin to facilitate prediction of efficacious dose in urinary tract infections

Irene Hernández-Lozano¹, Vincent Aranzana-Climent¹, Jon Ulf Hansen², Sha Cao³, Edgars Liepinsh⁴, Diarmaid Hughes³, Carina Vingsbo Lundberg², Sven N. Hobbie⁵, Lena E. Friberg¹

¹Department of Pharmacy, Uppsala University, Sweden ²Department of Bacteria, Parasites & Fungi, Statens Serum Institute, Copenhagen, Denmark ³Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden ⁴Latvian Institute of Organic Synthesis, Riga, Latvia ⁵Institute of Medical Microbiology, University of Zurich, Switzerland

Background & aim

Apramycin (EBL-1003) is a broad-spectrum aminoglycoside antibiotic for the treatment of gram-negative bacteria infections that is currently under development for human use. Although apramycin has demonstrated best-in-class coverage of resistant isolates and efficacy in preclinical lung infection models [1], its utility in other disease indications needs to be further evaluated. Previous proof-of-concept studies have suggested that apramycin has potential in the treatment of complicated urinary tract infection (cUTI) and acute pyelonephritis [2]. In this study, we used pharmacokinetic-pharmacodynamic (PKPD) modelling based on *in vitro* and *in vivo* data in order to predict apramycin efficacy in different mouse models of cUTI for subsequent scaling to humans.

- Methods
- Two E. coli bacterial strains were investigated: ATCC 700336 (a sulfamethoxazoletrimethoprim (SXT)-resistant UTI isolate) and EN591 (a multidrug-resistant *rmtB* isolate)
- In vitro time-kill experimental data at pH6 and pH7.4, as well as in vivo PK data of apramycin (studied in healthy and infected mice) were used to develop the PKPD model
- In vivo efficacy was evaluated in two cUTI mouse models (ATCC 700336 and EN591) assessing bacterial load in kidney and bladder tissue
- Model was developed using NONMEM v.7.5
- Data management, visualization and simulations were done using R v.4.2.0

Table 1. Parameter estimates and relative standard errors (RSEs) of the final model

Results

Parameter	Unit	Description	Strain	Value	%RSE
k _{g,s_vitro}	(h ⁻¹)	Susceptible bacteria growth rate constant (in vitro)	EN591	3.16	13.1
			ATCC 700336	2.69	8.9
k _{g,s_vivo,kidney}	(h ⁻¹)	Susceptible bacteria growth rate constant in kidney (in vivo)	EN591	0.451	4.2
			ATCC 700336	0.878	2.6
k _{g,s_vivo,bladder}	(h ⁻¹)	Susceptible bacteria growth rate constant in bladder (in vivo)	EN591	0.153	3.6
			ATCC 700336	0.304	8.2
Reduk _g	(%)	Fractional reduction in growth rate for the resistant subpopulation	EN591	40.1	20.3
			ATCC 700336	29.6	32
k _d	(h ⁻¹)	Natural bacterial death rate constant	Both	0.179	fix
B _{max}	log ₁₀ CFU/mL	Maximum bacterial density	EN591	9.42	1.3
			ATCC 700336	9.56	0.9
Slope _s	(h ⁻¹)	Rate constant for apramycin effect normalized by MIC in the susceptible subpopulation	EN591	3.79	10.7
			ATCC 700336	3.85	12.4
Slope _r	(h ⁻¹)	Rate constant for apramycin effect normalized by MIC in the resistant subpopulation	EN591	0.238	5.2
			ATCC 700336	0.613	12.3
k _{ada}	(h ⁻¹)	Rate constant for drug driven phenotypic switch from susceptible to resistant	Both	0.511	fix
RES _{vitro}	log ₁₀ CFU/mL	Residual error variance on log ₁₀ scale (<i>in vitro</i>)	EN591	0.335	22.2
			ATCC 700336	0.357	14.4
RES vivo,kidney	log ₁₀ CFU/organ	Residual error variance on log ₁₀ scale (<i>in vivo</i> - kidney)	EN591	1.75	19.1
			ATCC 700336	1.91	57.6
RES vivo,bladder	log ₁₀ CFU/organ	Residual error variance on log ₁₀ scale (<i>in vivo</i> - bladder)	EN591	1.95	11.9
			ATCC 700336	3.77	50.9

Figure 1. Schematic representation of the final PKPD model to predict apramycin effect *in vivo* in kidney and bladder tissue. The model includes two bacterial subpopulations, one susceptible (right) and one resistant (left). In each subpopulation the bacteria may exist in one of two discrete states: (i) antibiotic susceptible proliferating bacteria (grow), and (ii) non-proliferating bacteria unsusceptible to the antibiotic (rest).

In vitro time-kill data

Figure 2. Visual predictive checks (VPC) of the final model. Dots represent observed data, lines and area represent 95% confidence interval (CI) of the median. Each panel represents data for a specific bacterial strain , namely, EN591 (left panel) and ATCC 700336 (mid and right panels) under different pH conditions (pH6 or pH 7.4 – pH differences were only examined for ATCC 700336 bacterial strain). Subpanels represent different apramycin concentrations (xMIC). Data below the limit of detection are plotted as -0.2.

In vivo PD data

ATCC700336 cUTI mouse model

EN591 cUTI mouse model

Figure 3. Predicted (lines) and observed (points) kidney and bladder CFU with the newly estimated kg values. Each panel represents data for a different organ (i.e. kidney or bladder) in the two studied cUTI mouse models. Subpanels represent different apramycin concentrations.

- In vitro estimated effect parameters are similar under different pH (pH6 and pH7.4) after adjusting for MIC differences
- PKPD modelling integrated data from different sources: plasma PK, in vitro time-kill data, in vivo CFU data in kidney
 and bladder tissue
- PKPD model predictions of apramycin effect in kidney and urine were (up to certain extent) comparable to the measured effect
- k_g estimation suggested that bacterial growth is slower *in vivo*, as previously observed in a mouse thigh infection model [3]. Nevertheless, k_g estimation is associated to uncertainty due to the scarcity of data
- Slower k_g explained the larger reductions in bacterial count estimated in bladder as compared to kidney.
- Further dynamic PK and PD data both in kidney and bladder would be desirable for a better understanding and
 prediction on the tissue effect of apramycin in cUTIs
- This study holds promise to enable dosing recommendations for future clinical trials in patients with cUTI and to support the development of apramycin for human use

References:

- [1]Aranzana-Climent V et al. *Clin Microbiol Infect* (2022) 28(19):1367-1374
- [2]Becker K et al. EBioMedicine (2021) 73, 103652
- [3]Sou T et al. Clin Pharm Ther (2021) 109(4):1063-1073
- Funding information:
- This study was supported by the Swedish Research Council (2018-03296).

Acknowledgments

Some of the research leading to these results was conducted as part of the ND4BB European Gram-Negative Antibacterial Engine (ENABLE) consortium (<u>www.ndbb-enable.eu</u>). ACES and Fundación Ramón Areces are kindly acknowledged for their support to attend this conference.

UPPSALA UNIVERSITET

