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Introduction

• Active tuberculosis (TB) is associated with tachycardia, which diminishes with treatment
• Standard constant correction factors for QT interval, such as Bazett’s (0.5). and Fridericia’s

(0.33), may result in sub-optimal correction in this population1,2,3.
• A correction factor of 0.4081 has been proposed by Olliaro to optimally correct the QT

interval in patients with TB pre-treatment1.
• With a decrease in HR over time, QT-HR correlation also changes, suggesting the need for

time-dependent correction.

Aim

To establish a time-dependent correction method for QT interval that optimally accounts for
gradual changes in HR during the treatment period.

Methods

Data

• 440 Multidrug-resistant (MDR) TB patients received bedaquiline (BDQ) or a placebo for 8 
weeks (C208, stage 1) or 24 weeks (C208, stage 2, or C209) on top of a background 
regimen.
i. C208 (2-stage, randomized, double-blind, placebo-controlled)4,5.
ii. C209 (single-arm, open-label)6. 

• Baseline and on-treatment ECG measurements were included, and BDQ and M2 (main 
metabolite of BDQ) concentrations were predicted using a published pharmacokinetic 
model7 at the time of ECG measurements. 

• Two independent studies were used for external validation: 

i. The A5343 DELIBERATE study (N=82), a phase 2, open-label, randomized, controlled 
trial, in patients receiving BDQ, delamanid, or both for 24 weeks in addition to 
background treatment8.

ii. The PROBeX study (N=195), a prospective cohort study of patients in South Africa 
receiving a BDQ-containing regimen for 24 weeks9.

Model and time-varying correction factor development
HR model was initially developed to describe the change in HR during treatment. Time-varying 
correction factor was then constructed using a parameter from the HR model that describes 
the rate of change in HR. 

Correction Factor Evaluation
• Linear regression analyses in time intervals using QTc and HR.
• Linear regression of the interval-specific slopes (the slope between QTc and HR) accounting 

for standard error in the estimate was used.
• Successful correction was indicated by the slopes and r2 values being close to 0.

Software
• Model development and simulation: NONMEM V. 7.4.4 & 7.5 and PSN 5.3.0.
• Visualization and analysis: R 4.2.2.

Result

The full HR model (eq. 1) included components describing; 
• An asymptotic change in heart rate with time after study start (eq. 2)
• 24 & 12-hour circadian rhythm cycles (eq. 3)
• Effect of M2 (Emax-model) (eq. 4)
• Patient covariates (eq. 5, eq. 6)

𝐻𝑅 𝑡 = (𝐻𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑇𝐸 𝑡 + 𝐷𝐼𝑈𝑅 𝐶𝑇𝐼𝑀𝐸 ) ∗ (1 − 𝑀2𝐸𝐹)    (eq. 1)

 𝑇𝐸(𝑡) =  (𝐻𝑅𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 − 𝐻𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) ∙ 1 − 𝑒
− log 2 𝑡

𝑡𝑝𝑟𝑜𝑔        (eq. 2)

 𝐷𝐼𝑈𝑅(𝐶𝑇𝐼𝑀𝐸) = 𝐴24 ∙ cos
2𝜋(𝐶𝑇𝐼𝑀𝐸−𝜑24)

24
+ 𝐴12 ∙ cos

2𝜋(𝐶𝑇𝐼𝑀𝐸−𝜑12)

12
        (eq. 3)

 𝑀2𝐸𝐹 =
𝐸𝑚𝑎𝑥,𝑀2∙𝐶𝑜𝑛𝑐𝑀2

𝐸𝐶50,𝑀2+𝐶𝑜𝑛𝑐𝑀2
                     (eq. 4)

 𝑃𝑗 = 𝜃0 ∙ (
𝑋𝑖𝑗

𝑀(𝑋𝑗)
)𝜃𝑗      : for continuous covariates     (eq. 5)

 𝑃𝑗 = 𝜃0 ∙ (1 + 𝜃𝑖𝑋𝑖𝑗)    : for categorical covariates            (eq. 6)

HRbaseline: Heart rate at baseline, HRrecovered: Heart rate at recovered (steady state), Tprog: the time to reach 50% of recovered HR from 
baseline (in weeks), A: Amplitudes(bpm), 𝜑: acrophases(h), CTIME: clock time, Emax,M2: maximal effect of M2, EC50M2: the M2 
concentration producing 50% of maximal effect, ConcM2: the predicted concentration of M2, Pj is the jth population estimate of 
parameters, Xij is the covariate of subject i for the parameter Pj, M(Xj) is the median of covariate X for the population, θ0 is the typical 
value of the parameter Pj, and θi is a constant that reflect the proportional covariate’s effect on the parameter for i.

The PROBeX study team

Table 1: Parameter estimates of the final HR model

HR: heart rate, Tprog: time to reach 50% of recovered HR from baseline, EC50: half maximum effect concentration,
Emax: maximum effect, h: hour, MGIT: mycobacteria growth indicator tube, IIV: inter-individual variability CV: coefficient of variation, RSE:
residual standard error, RUV: residual unexplained variability

Figure 1: Visual predictive check of the final model for C208 & C209 and external validation 
dataset (A5343, PROBeX), 1000 simulations, parameter re-estimated for validation dataset

Description
Parameter 

Estimate (%RSE) 
IIV %CV (%RSE)

Time on treatment Baseline HR (bpm) 78.2 (1.2) 15 (4)

Recovered HR (bpm) 73.1 (1.4) 15.4 (6)

Tprog (weeks) 7.74 (16.8)

Circadian rhythm Amplitude 24 h (bpm) 6.2 (13.6) 95.3 (9)

Peak time 24 h (clock time) 15.7 (1.3)

Amplitude 12 h (bpm) 1.65 (19.7) 95.3 (9)

Peak time 12 h (clock time) 10.1 (4.8)

Box-cox shape for IIV amplitudes −0.77 (20.9)

M2 effect on HR Emax (fraction) 0.179 (11.1)

EC50 (ng/mL) 2600 (13) 883.4 (2)

Covariate effects Effect of study on HR (Study C209 vs C208) 0.047 (31.3)

Effect of changes in body weight on HR −0.2 (15.2)

Effect of baseline serum albumin on HR −0.22 (17.6)

Effect of baseline MGITb on baseline HR −0.05 (22.9)

Effect of age on recovered HR 0.08 (30.1)

Residual error model Proportional RUV (%) 8.4 (2) 23.6 (8)

Additive replicated-specific RUV (bpm) 2.7 (1.9) 38.5 (4)

Estimated Tprog : 8.33 weeks 
(95%CI: 5.85-10.77) 

Estimated Tprog : 8.63 weeks
(95%CI: 0.34-16.88)

Estimated Tprog : 7.74 weeks
(95% CI: 5.17 -10.27 weeks)

• The estimated Tprog from the final model (supported by comparable Tprog estimates  from 
the base model, 8.15 weeks [95%CI 5.47-10.87], and from A5343 and PROBeX studies) was 
utilized to construct the time-varying correction factor, assuming that the estimated HR 
recovery rate represents the rate of change for the correction factor, as per the following 
formula:

𝐶𝐹 𝑡 =  0.4081 − 0.0781 ∙ 1 − 𝑒
− log 2 ∙𝑡

7.74  
Correction factor(CF) decreases asymptotically from 0.4081 (Olliaro’s)1 towards 0.33 (Fridericia’s) over the time on treatment (t). 

• The performance evaluation showed that the overall slope derived from the time-varying 
CF was not different from 0 (-0.008 [95%CI -0.004-0.003]), whereas the slope derived from 
QTcF was 0.013 (95%CI 0.009-0.016).   

Figure 2: QTc versus heart rate plot with linear regression analysis, including slope,
confidence interval, and r2 values for Fridericia corrected (QTcF), Olliaro corrected (QTcO),
and time-varying corrected QT (QTcTBT) from C208&C209 datasets.

Conclusion

• The newly developed time-varying correction method can capture the natural change in 
QT-HR correlation that occurs during TB treatment, enhancing accuracy in QT 
prolongation determination. 

• It may alleviate the issue of QTcF underestimating the QT interval in early treatment and 
reduce the overestimation of QTc change from the baseline.

• As a result, this method enables more informative analysis of drug effects on QT in clinical 
trials and facilitates better treatment decisions for individual TB patients.
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