Empirical Power Evaluations of an Item Response Model in Parkinson's Disease Patients

Ana Novakovic¹, Kris Jamsen¹, Camille Vong², Usman Arshad², Chao Chen² [1] Parexel Clinical Pharmacology, Modeling and Simulation, [2] GSK Clinical Pharmacology Modeling and Simulation

Background

- The Unified Parkinson's Disease Rating Scale (UPDRS), a multiitem symptom evaluation tool that includes three sub scales, is the most widely used measure of disability in Parkinson's disease (PD) drug trials [1].
- Despite its validity, the assessment of all required items of the UPDRS can be burdensome on patients and their caregivers.
- Application of item response models (IRMs) can allow for sparser study designs when implementing the UPDRS, which can be beneficial to patients, caregivers and investigators.

Objective

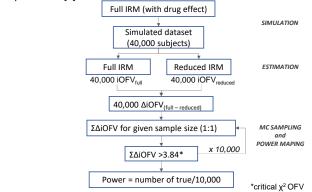
 To evaluate the impact of study design on the statistical power to detect a drug effect within an IRM of the UPDRS in PD patients.

Methods

Development of the Model Used for the Evaluations

 The IRM was developed using data from a ropinirole trial in advanced PD patients [2, 3] and included 27 UPDRS items belonging to Part III: Motor Examination (3 sub-categories: nonsided, left-sided and right-sided; each consisting of 9 items).

Study designs


• The IRM was then used for the empirical power evaluations. The following designs were considered:

Sce	nario	No. of Items	Assessment times (weeks)	
	1	27	0, 4, 12, 24 for all patients	
	2	18*		
	3	9**		
	4	27	0.4.24 for E00/ of potionto:	
	5	18*	0, 4, 24 for 50% of patients; 0, 12, 24 for 50% of patients	
	6	9**	0, 12, 24 101 30 % 01 patients	

*6 of 9 items selected randomly for each of the three subcategories **3 of 9 items selected randomly for each of the three subcategories

Empirical Power Evaluations

 For each design, the power to detect the drug effect from the IRM was computed using a Monte Carlo Mapped Power (MCMP) procedure [4]:

- To account for *additional* inter-trial variability, stochastic simulationestimations (SSEs) were explored at several sample sizes for Scenario 1 using the following approaches:
 - Classic application of SSE.
 - With parameter uncertainty based on the standard errors (SEs) from the original analysis (included via PRIOR subroutine).
 - Inflation of the shared placebo/drug effect between-subject variance (BSV; see Table 1) by (i) 25% and (ii) 50%.

Results

Model Used for the Evaluations

- 40,022 UPDRS Part III longitudinal records from 391 patients (190 placebo; 201 ropinirole; all treated over 24 weeks) were used.
- The structure of the underlying severity index was:

```
Latent variable_i(t) = BL_i + (PL + DE)_i * (1 - e^{-Onset Rate*t})
Where BL: baseline, PL: placebo effect, DE: drug effect
```

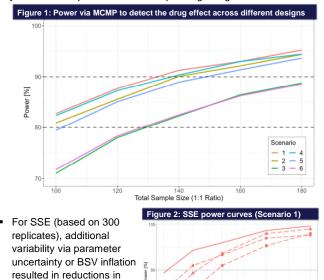

Parameter estimates are shown in Table 1:

Table 1: Parameter estimates				
Parameter	Value (RSE%)	BSV (RSE%)		
Baseline	0 FIX (-)	1 FIX* (-)		
Placebo effect [week-1]	-0.0467 (113)	0.438* (10)		
Drug effect [week-1]	-0.437 (17)			
Onset rate [week-1]	0.153 (8)	-		

*Correlation between the two BSVs was estimated at -0.259 (22%).

Empirical Power Evaluations

- For MCMP, a reduction in the number of assessed UPDRS items from 27 to 18 resulted in minimal sacrifice in power (Scenarios 1 vs. 2 and 4 vs. 5; Figure 1).
- A further reduction to 9 items (Scenarios 3 and 6) corresponded to a more notable drop in power.
- Specifying 3 visits per patient with stratification (Scenarios 4 6) yielded similar power to the corresponding designs with 4 visits.

Discussion Points

power for Scenario 1

(Figure 2).

Summary of Current Findings

Solid line: classic; circles: with parameter uncertainty; triangles: BSV inflated by 25% squares: BSV inflated by 50%.

 The preliminary results suggest that sparser sampling of UPDRS items (≥18) reduces study power only slightly when using the IRM with a sufficient sample size.

100

120

Question for the Audience:

 Is including parameter uncertainty, inflation of BSV, or any other method appropriate and/or critical for accounting for additional between-trial variability that may occur, hence providing more conservative predictions of the outcome of a future trial?

References

Ramarker et al., Mov Disord 2021;17:867-876 [3] Pahwa et al., Neurology 2007;68(14):1108-15
 Chen et al., CPT:PSP 2021 Apr;10(4):309-17 [4] Vong et al., *The AAPS journal* 2012;14:176-186