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Objectives

Understanding quantitative systems pharmacology is essential for drug development. Protein-Protein Interaction (PPI) is the basic unit of life activity, and to
analyze these PPIs holistically, Protein Graph Network is analyzed. Protein information can be represented by amino acid sequences, and it is reasonable to use a
model pre-trained on amino acid sequences. Since none of the state-of-the-art models in the OBGL-BIOKG dataset competition[1] used a model pre-trained on
amino acid sequences, we built a Graph Convolutional Model using a Large Language Model (LLM) for amino acid sequences to predict seven types of PPIs.
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Figure 1: Exploratory data analysis:
open graph benchmark dataset scheme of biology knowledge graph
and Counts for every node and every PPI edge of OGBL-BIOKG dataset
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Figure 2: Data Mining:
For building nodes in the protein graph, amino acid sequences were collected.
Protein nodes were represented only by Gene IDs in the OGBL-BIOKG dataset.
Using the gene IDs, we imported the amino acid sequences from NCBI
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Figure 3: Data Process:
Amino acid sequences were processed with Meta’s ESM model (Large Language
Model)[2] to embed the protein nodes into a 640-dimensional vector.
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Figure 4: Graph Convolutional Network:
GAT(Graph ATtention Network)[3] were used to calculate PPI. α is the attention
score for a protein node directed to another protein node. In the example above,
the sum of α12, α13, and α14 is 1. The αs are weights for how much protein 1 was
affected by protein 2, protein 3, and protein 4, respectively.
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Figure 5: PPI Prediction:
The protein node vectors were computed by graph convolution using the GAT
layer. Then, the PPI edge vectors to be predicted were generated by concatenating
the two protein node vectors, and the PPI edge vector is fed into the deep neural
network to predict 7 probabilities.

Results
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Figure 6: Train records with pre-trained protein nodes
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Figure 7: Train records without pre-trained protein nodes

With pretrain Without pretrain
PPI Accuracy AUROC Accuracy AUROC

Total 0.81 0.88 0.81 0.89
Activation 0.92 0.95 0.93 0.95
Binding 0.65 0.76 0.65 0.75

Catalysis 0.61 0.69 0.61 0.71
Expression 1.00 0.88 1.00 0.88
Inhibition 0.97 0.96 0.97 0.96

Post-translational
modification 0.98 0.97 0.98 0.96

Reaction 0.57 0.66 0.57 0.67
Table 1: validation edges’ prediction accuracy and Area Under Receiver
Operating characteristic Curves(AUROC). (without train edges)

Number of parameters
Layer with pre-train without pre-train
GCN 5.8*10ˆ6 5.8*10ˆ6
Classifier 287 287
Protein Embedding 0 11.2*10ˆ6

Table 2: Numbers of model parameters. Using the pre-train model, we achieved
similar performance with fewer parameters.

Conclusions

We built a deep learning model to understand protein-protein interactions
using the Graph Convolutional Model. With appropriate prior knowledge, we
were able to achieve similar performance with fewer parameters, and we built
models that used more biological knowledge than models that did not use
amino acid sequences. and Since our model uses the pre-train model when
adding new protein nodes, we can maintain relatively high performance
without retraining the GCN. The Large Language Model (LLM), which is
currently in the spotlight, has the disadvantage of being non-explanatory, so
the output of the LLM needs to be verified by experts in each domains. Graph
models can be understood by experts in different domains and are therefore
more suitable as a decision-making tool in the pharmaceutical industry,
where several experts work together.
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