

KÖLN

UNIKLINIK **Department of Pharmacology University Hospital of Cologne**

Plasma and cerebrospinal fluid population pharmacokinetics of vancomycin in patients with external ventricular drain

Zhendong Chen¹, Max Taubert¹, Chunli Chen^{1,2}, Charalambos Dokos¹, Uwe Fuhr¹, Thomas Weig³, Michael Zoller³, Suzette Heck⁴,

Konstantinos Dimitriadis^{4,5}, Nicole Terpolilli^{5,6}, Christina Kinast³, Christina Scharf³, Constantin Lier⁷, Christoph Dorn⁷, Uwe Liebchen³

¹Department I of Pharmacology, University of Cologne, Cologne, Germany; ²College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China; ³Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany; ⁴Department of Neurology, University Hospital, LMU Munich, Germany; ⁵Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Germany; ⁶Department of Neurosurgery University Hospital, LMU Munich, Munich, Germany; ⁷Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany.

zhendong.chen@uk-koeln.de

Introduction	Demogra	aphics and	covariates	Model development		
Background: Vancomycin is a standard therapy for central nervous	Characteristic	Patients with primary CNS infection	Patients without primary CNS infection	 Software: NONMEM (version 7.4) and Perl-speaks-NONMEM; Statistical criteria: ΔOFV>3.84 (P < 0.05) for inclusion of one parameter between nested 		
system (CNS) infections, specifically nosocomial infections, caused by	Demographics			models; AIC were compared between non-nested models;		
Gram-positive penicillin-resistant nathogens ^[1] However, vancomvcin	Male	7	4	Plasma base model was firstly developed using plasma data only;		
Champeolitic periodilit resistant patriogens - riewever, varioentyen	Female	2	1	CSF model was directly linked to the central compartment;		
cannot easily penetrate through the blood-brain barrier (BBB) into the	Age (years)	59.7 (11.8)	37.0 (10.2)	Two empirical CSF base models were compared and assessed separately ^[5,6] ;		
cerebrospinal fluid (CSF) due to its pronounced hydrophilicity and	Body weight (kg)	84.2 (25.0)	88.6 (16.6)	Bulk flow model was chosen and Q _{bulk} was fixed at 0.025L/h;		
	Height (cm)	174 (6)	179 (9)	Power model was used for continuous covariates and conditional effect was used for		
large molecular weight ¹² . Vancomycin CSF concentrations are highly	Covariates in plasma			categorical covariates.		
variable also because the extent of vancomycin penetration depends	CrCL (mL/min)	142 (57)	194 (41)			
much on the integrity of the BBB ^[3] . So far only a few studies	Creatinine (mg/dL)	0.671 (0.138)	0.693 (0.287)			
much on the integrity of the DDD Oo far, only a few studies	Covariates in CSF			Transit CSF CSF		
investigated CSF pharmacokinetics of vancomycin in	Protein (mg/dL)*	108 (53)	27.4 (29.0)			
neurological/neurosurgical, while available data in individual studies is	Glucose (mg/dL)*	51.4 (21.7)	80.4 (13.5)	$\frac{Q_{CSF} + Q_{BULK}}{V}$		
	Lactate (mmol/L)*	4.63 (0.98)	1.78 (0.43)	$KTR \qquad \frac{Q_{CSF}}{V_{c}} \qquad \frac{Q_{CSF}}{V_{c}}$		
sparse and validation of developed exposure predictors is limited.	S100 protein (µg/L)	3.88 (2.13)	30.0 (0.0)			
Objective: (i) To investigate predictors for vancomycin penetration into	Neuron-specific Enolase (µg/L)	15.6 (4.9)	326 (199)	$\frac{Q_p}{V}$		
CSE using a population pharmacokinetic (PopPK) approach based on	Ferritin (µg/L)	501 (92)	264 (277)	$\left(\begin{array}{c} Central \\ \hline \end{array}\right) \xrightarrow{V_c} \left(\begin{array}{c} Peripheral \\ \hline \end{array}\right) \\ \hline \end{array} \\ \left(\begin{array}{c} Central \\ \hline \end{array}\right) \xrightarrow{V_c} \left(\begin{array}{c} Peripheral \\ \hline \end{array}\right) \\ \hline \end{array}$		
Cor using a population pharmacokinetic (Fop K) approach based on	Erythrocytes (10 ³ µg/L)	137 (127)	4.85 (5.37)	Q_p		
vancomycin plasma and CSF data from patients who had an external	Cell count (cells/µL)	292 (128)	170 (316)	V_p V_p		
ventricular drainage (EVD): (ii) to assess the feasibility of collecting	Interleukin 6 (10° ng/L) \square Detion to wore closelified	157 (278)	5.65 (8.66)	$\frac{CL}{T}$		
OOE = control	not and table are shown	as mean (SD);		$V_{\rm c}$		
USE samples at the distal port of the EVD system for therapeutic drug	Blood and CSF samples	from the proximal port (CSF_P)	or distal port (CSF_D) of the EVD			
monitoring (TDM); (iii) to examine the benefits of different infusion	system were collected parameters ^[4] ;	for measurements of vancomy	ycin concentrations and clinical	Transit compartment model Bulk flow model		

□ Vancomycin was administered by intermittent infusion and/or continuous infusion (with or without an initial loading dose).

Parameter estimates

	Final model		927 successful bootstrap runs		
Parameters	Estimate	RSE (%)	Median	95% confidence interval	
CL (L/h)	4.53	7.5	4.52	3.74 – 5.29	
V_{c} (L)	24.0	8.6	23.3	16.6 – 27.0	
Q _p (L/h)	5.69	12.2	5.70	4.43 - 8.64	
V _p (L)	38.7	16.5	39.7	27.9 – 59.1	
Q _{CSF} _1 (L/h)	0.00322	5.6	0.00331	0.00263 - 0.00390	

Model diagnosis A. plasma: DV vs. IPRED F. CSF: DV vs. PRED B. plasma: DV vs. PRED E. CSF: DV vs. IPRED 10 20 30 40 50 60 1 2 3 4 5 6 10 20 30 40 50 60 1 2 3 4 5 6

Population predictions (mg/L

D. plasma: CWRES vs. PRED

Individual predictions (mg/L)

C. plasma: CWRES vs. TIME

Covariate vs. PK/PD target

compartment.

Population predictions (mg/L)

H. CSF: CWRES vs. PRED

Q _{CSF} _2 (L/h)	0.00135	29.9	0.00129	0.000938 – 0.00383					
V _{CSF} (L)	0.445	14.7	0.465	0.244 – 0.883					
Covariates									
CrCL on CL	0.453	27.6	0.452	0.150 – 0.830					
Age on Q _p	2.69	24.4	2.84	1.37 – 4.74					
Protein (CSF) on Q _{CSF} _1	1.09	6.0	1.10	0.808 – 1.67					
Protein (CSF) on Q _{CSF} _2	0.575	21.9	0.575	0.203 – 1.03					
Inter-individual variability									
CL (%)	29.5 (0.1%)	18.7	27.9	15.9 – 38.1					
V _p (%)	54.3 (20.6%)	25.1	54.9	21.4 – 93.7					
Q _{CSF} (%)	19.8 (17.7%)	20.8	13.6	4.7 – 25.1					
V _{CSF} (%)	94.2 (10.1%)	20.8	105.0	36.1– 175.7					
Residual variability									
Proportional error (Plasma, %)	15.9 (5.3)	15.5	15.4	10.7 – 20.4					
Proportional error (CSF, %)	27.5 (3.8)	5.6	26.5	17.3 – 34.7					

CL, clearance; V_c , the central compartment volume; Q_p , inter-compartment clearance of central and peripheral compartments; V_p, the peripheral compartment volume; CrCL, creatinine clearance; Q_{CSE}_1 inter-compartment clearance between plasma and CSF compartment in patients with primary CNS infection; Q_{CSF}2, inter-compartment clearance between plasma and CSF compartment in patients without primary CNS infection; V_{CSF}, the CSF compartment volume. RES: relative standard error.

Individual predictions (mg/L

G. CSF: CWRES vs. TIME

Figure 2 Combined goodness-of-fit plots of the final model for vancomycin plasma (A – D) and CSF (E – H) concentrations.

Figure 3 Confidence interval prediction-corrected visual predictive check (n = 1000) for the final model for plasma and CSF observations.

Plasma AUC₂₄ or CSF C_{trough}

Probability of target attainment (PTA; plasma AUC_{24} or CSF C_{trough}) in simulated patients with primary central nervous system infection after different dose regimens of vancomycin on day 1 and at steady state (in parentheses).

Simulations: 3 infusion modes

Conclusions

- ✓ A PopPK model for vancomycin was successfully established using the data from patients with EVD;
- Three substances quantified in CSF were identified as predictors associated with vancomycin CSF concentrations, while the relationship was closest with CSF protein;
- The model fully supported feasibility of collecting CSF sample at the distal port of the EVD system for TDM;
- **Recommendations on dosing regimen for patients with CNS**

> 600	(56.9) 0.1 (15.5)	(91.3) 18.9 (56.9)	(98.8) <mark>54.0</mark> (85.6)	(59.6) 0 (17.0)	(92.1) 15.4 (59.6)	(98.7) <mark>48.2</mark> (85.8)	(61.7) 0 (17.7)	(92.7) 3.3 (61.7)	(99.0) <mark>28.2</mark> (87.3)	0.5 0.5	- infec	ction were provided according to different CSF protein ls;
CSF C _{trough} (mg/ > 0.5 > 1.0	L) 87.5 (98.4) 64.2 (89.2) 27.6	94.0 (99.7) 80.7 (96.0) 49.9	96.7 (100) 87.5 (98.4) 64.2	87.1 (99.0) <mark>62.5</mark> (92.0) 23.5	94.1 (99.9) 78.7 (97.4) 47.6	96.8 (100) 87.1 (99.1) 62.5	86.4 (99.3) 64.3 (92.4) 29.7	93.4 (99.9) 78.7 (97.8) 51.0	96.6 (100) 86.4 (99.3) 64.3	0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 I (q12h) in plasma — Cl_L in plasma — Cl in plasma — II (q12h) in CSF — Cl_L in CSF — Cl in CSF	✓ Beye treat infect	ond adjusting doses according to renal function, starting tment with a loading dose in patients with primary CSF ction is recommended. References
 21.0 49.9 04.2 23.3 47.6 62.5 29.7 51.0 64.3 (63.7) (63.7) (81.4) (89.2) (70.3) (85.7) (92.0) (70.1) (85.8) (92.4) Plasma AUC₂₄ Plasma AUC₂₄ of CI is lower than that of II and CI_L on day 1, but there were no difference in PTA between 3 infusion modes at steady state; Daily dose of 2 g is sufficient whether by II or CI_L to achieve AUC₂₄ > 200 mg·h/L in >90% simulated patients; Patients with CrCL < 150 mL/min need a daily dose of 3 g whereas patients with CrCL > 150 mL/min may require a daily dose of 4 g to achieve AUC₂₄ > 400 mg·h/L; Daily dose of 4 g would cause at least 28.2% of patients to face a potential plasma AUC₂₄ above 600 mg·h/L, which may lead to a higher risk of acute kidney injury. CSF C_{trough} The three infusion modes with same daily dose resulted in similar levels of C_{trough} in CSF on day 1 and at steady state. 							(70.1) there wer 2 ₂₄ > 200 r as patier 0 mg·h/L; potential injury. r levels o	(85.8) re no diff mg∙h/L in nts with (I plasma of C _{trough} i	(92.4) erence >90% CrCL > AUC ₂₄	 Figure 6 Median concentration vs. time curves simulated in plasma and CSF after different dosing regimens of vancomycin over 5 days in patients with CNS infection. II: intermittent infusion; CI_L: continuous infusion with loading dose same as the first dose of q12h; CI_L: continuous infusion with loading dose same as the first dose of q12h; CI: continuous infusion without loading dose. > II and CI_L allowed to reach presumed same target concentrations in CSF faster compared with CI; > CI could keep plasma concentrations relatively low during the therapy; > If the target Ctrough in CSF is 1 mg/L, adjustment of doses according to CSF protein concentrations of ≥150, <150 & ≥100, and <100 mg/dL would result in daily doses of 2, 3, and 4 g vancomycin which were then linked to a PTA of 90.4%, 90.8%, and 69.6%, respectively, in simulated patients; > Excessive systemic exposure would also prohibit using even higher vancomycin doses in order to achieve higher CSF PTA in patient with low CSF protein concentration. 	 J. Rybak review Society 2. Lutsar 27(5):1 3. Rybak 1:S35-9 4. Kinast Below t 5. Jalusic ventricu 6. Büsker childrer 	 M, Lomaestro B, Rotschafer JC, <i>et.al.</i> Therapeutic monitoring of vancomycin in adult patients: a consensus of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the y of Infectious Diseases Pharmacists. <i>Am J Health Syst Pharm.</i> 2009; 66:82-98. I, McCracken GH Jr, Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. <i>Clin Infect Dis.</i> 1998; 117-27, quiz 1128-9. MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. <i>Clin Infect Dis.</i> 2006; 42 Suppl 9. CB, Paal M, Liebchen U. Comparison of Cerebrospinal Fluid Collection Through the Proximal and Distal Port the Overflow System from an External Ventricular Drain. <i>Neurocrit Care.</i> 2022; 37:775-778. KO, Hempel G, Arnemann PH, <i>et.al.</i> Population pharmacokinetics of vancomycin in patients with external ular drain-associated ventriculitis. <i>Br J Clin Pharmacol.</i> 2021; 87:2502-2510. S, Jäger W, Poschner S, <i>et.al.</i> Pharmacokinetics of metronomic temozolomide in cerebrospinal fluid of n with malignant central nervous system tumors. <i>Cancer Chemother Pharmacol.</i> 2022; 89:617-627.