

Model-informed precision dosing of high-dose IV busulfan in Thai pediatric patients

Félicien Le Louedec¹, Apichaya Puangpetch^{2*}, Usanarat Anurathapan³, Samart Pakakasama³, Suradej Hongeng³, Etienne Chatelut¹, Fabienne Thomas¹, Chonlaphat Sukasem²

Context

- Busulfan is used in conditioning regimens for pediatric hematopoietic stem cell transplantation. Target : AUC of 16,000 or 18,000 μM.min over 4 or 5 days.
- Currently at Ramathibodi Hospital (Bangkok, Thailand): TDM with 7 samples/day
- Objectives: Use the population approach (NONMEM) to:

 Predict clearance from a formula based on demographic and pharmacogenetics covariates to predict the dose and possibly replace TDM
Identify the best TDM strategy (days, number of samples, Bayesian analysis)

1. Base model

¹ Laboratoire de Pharmacologie, Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse Oncopole, Centre de Recherche en Cancérologie de Toulouse, INSERM U1037, Université Paul Sabatier, Toulouse (France).

² Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand).

³ Division of Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand)

* funded by a grant from Campus France (PHC SIAM 2022, project N° 48223YM)

Characteristic	Full cohort, N = 135 ¹	Genetics cohort, N = 114 ¹	
Age (y.o.)	8.0 (4.0, 12.0)	8.0 (5.0, 12.0)	
Body Weight (BW, kg)	25 (15, 40)	25 (18 <i>,</i> 39)	
Height (cm)	126 (102, 146)	127 (105, 147)	
Body Surface Area (kg/m ²)	0.93 (0.66, 1.28)	0.94 (0.72, 1.27)	
Sex			
Female	62 (46%)	51 (45%)	
Male	73 (54%)	63 (55%)	
Body Weight (BW, kg) Height (cm) Body Surface Area (kg/m²) Sex Female Male	25 (15, 40) 126 (102, 146) 0.93 (0.66, 1.28) 62 (46%) 73 (54%)	25 (18, 39) 127 (105, 147) 0.94 (0.72, 1.27) 51 (45%) 63 (55%)	

- 2018 conc, 285 courses, 135 patients
- One-compartment model
- Inter-individual (IIV) and inter-occasion (IOV) variabilities on CL and V.
- Correlation between CL and V
- Systematic decrease of CL and V at Day 2-3-4 (- 6%)
- Body size effect: body weight with allometric coefficients on CL and V
- Small residual variability (6.1%)

Parameter	Fixed effects	IIV	ΙΟν
Clearance (L/h)	5.85 (2.52%)	26.0% (8.05%)	14.1% (9.88%)
Volume (L)	18.8 (1.80%)	16.3% (8.41%)	13.8% (8.63%)
Body weight on CL	0.834 (5.45%)	-	-
Body weight on V	0.927 (3.58%)	-	-
DAY234_CLV	0.942 (1.51%)	-	-
Correlation CL~V	-	84.4% (4.83%)	67.9% (13.80%)

Diagnosis

Didgitosis				
Hematologic malignancy	38 (28%)	29 (25%)		
Non-hematol malignancy	17 (13%)	14 (12%)		
Hematologic benign disease	68 (50%)	62 (54%)		
Metabolic disease	5 (3.7%)	5 (4.4%)		
Primary immunodeficiency	7 (5.2%)	4 (3.5%)		
Fludarabin Conditioning Regimen	104 (77%)	89 (78%)		
Duration of Busulfan Regimen (days)				
4	116 (86%)	100 (88%)		
5	19 (14%)	14 (12%)		
Number of PK explorations				
1	7 (5.2%)	0 (0%)		
2	107 (79%)	99 (87%)		
3	20 (15%)	15 (13%)		
4	1 (0.7%)	0 (0%)		
PK explorations at Day 0	18 (95%)	14 (100%)		
PK explorations at Day 1	133 (99%)	113 (99%)		
PK explorations at Day 2	50 (37%)	45 (39%)		
PK explorations at Day 3	83 (61%)	71 (62%)		
PK explorations at Day 4	1 (0.7%)	0 (0%)		
GSTM1 Copy Number Variations (0 / 1 / 2 / 3)		78 / 33 / 2 / 1 (68% / 29% / 2% / 1%)		
GSTP1 variant carriers (WT / HET / HOM)		65 / 46 / 3 (57% / 40% / 3%)		
GSTA1 variant carriers (WT / HET / HOM)		90 / 19 / 5 (79% / 17% / 4%)		

0.0%

MPE %

2. A priori estimation of clearance

- Stepwise covariate modelling
 - Clearance at Day 1 best predicted with $CL = 6.38 \cdot \left(\frac{BW}{25}\right)^{0.768} \cdot 0.896^{MALIGN} \cdot 0.894^{GSTA1}$
 - RMSE = 1.91 L/h; MPE = +2.4%
- Internal validation: 10-fold cross validation

3. Limited Sampling Strategy

Bayesian analysis with Base Model

-1.0%

Best limited sampling strategy (RMSE = 0.16 L/h, MPE = +0.3%):

1.0%

2.0%

3.0%

4. Evaluation of the best Dosing Strategy

No TDM.	No TDM.			TDM	
Formula	Formula		$\frac{1000}{18.2}$	Day 1 & 3	1 UIVI Davi 1 - 2 8. 2
without Genetics	with Genetics	Day I	Day I & S	(7 samples/day)	Day I, Z Q S

-2.0%

Conclusion

- Formula-based dose calculations perform poorly, TDM remains essential
- Limited perspective for pharmacogenetics of busulfan
- Performing TDM on day 1 and 3, with 3 samples
- Bayesian analysis can be done with **R** with **shiny / mrgsolve / mapbayr** packages