

Elba M. Romero Tejeda¹, Nieves Vélez de Mendizábal¹, Iñaki F. Trocóniz¹ ¹Department of Pharmacy and Pharmaceutical Technology, University of Navarra. Pamplona, Spain.

Background The implementation of PD models to characterize specific processes between drug administration and its effect, are now substantially explored in

2.12

10.50

3.36

Study

1 3.88

changes in testosterone concentrations observed after prolonged exposure of a GnRH agonist.

Objective

order to describe the behaviour of receptor mediated drug effects. To analyze the performance on the pharmacodynamic (PD) of an agonist, we developed a receptor-mechanism-based PD model able to describe the

Cmax Agonist (ng/mL)

Predicted an* (5-95th)

4.29 (3.05 - 5.94)

2.29 (1.70 - 3.05) 11.57 (7.92 - 16.91)

4.32

3.64 (3.10

Table of descriptors pK study 1 PK Methodology A_1 D (study 2 & 3 A, k_ pK study 4 $SGN = \frac{AGN + BGN}{1 + AGN + BGN}$ SGN A_2 Lag_1 FF1 $\frac{EC_{50}}{EC_{50}+(SGN-SGN)}$ Cp Pha EF1 RAC=RT*SGN PD Initial conditions RAC $SGNO = \frac{AGN}{1 + AGN}$ EF10 =1 RT $k_{REI} = k_{REI}$ $\frac{dTST}{dt} =$ k_{STT} *RAC+ k_{IN} -TST* k_{DTT} Recep RACO = RTO*SGN $k_{STT} = \frac{(TSTO*k_{DTT})}{RACO}$ $\frac{dRT}{dt}$ -= k os *FF1 * FDB - RT*ko FDB FDB=-RT2+2R1 Mechanistic-based pharmacodynamic model of a GnRH agonist effect on testosterone levels after prolonged ion. Description of Clinical phase Study 1 2 3 4 Patients/healthy Population Patients Patients Patients No. subjects 19 12 12 24 Subcutaneous administration

Blood samples taken until effect was over (recuperation of normal testosterone levels) (3 - 6 months)

- Structural design of PD model Developed through VENSIM (Ventana Systems, Inc., MA, United States.) computing environment. The effect-versus-time data were evaluated during the analysis by the program NONMEM v7.
- Performance evaluation between models was done by the exploration of visual predictive check and other statistical evaluation tools [PsN version 3.2.4, R v 2.10.1, MATLAB Version 7.9.0529 (R2009b)] [4].

Results

Pharmacokinetic table of parameters

Study	1		2		3		4	
Pharmacokinetic parameters	Typical value Estimate (%RSE)	IIV %CV (RSE%)						
CL/F (L.day)	279 (12)	-	140 (9)	-	416 (13)	-	41.04 (4)	-
V _C /F(L)	2450 (16)	39(43)	249 (25)	-	28 (20)	-	11.6 (18)	26 (42)
F ₁	0.09 (7)	34(62)	-	-	-	-	0.26 (7)	42 (36)
F2 ^b	0.91	-	-	-	-	-	0.74	-
Frei	1	-	1	25 (49)	1	40 (40)	-	-
β	-	-	0.51 (11)	47 (46)	0.38 (8)	18 (54)	0.815 (3.4)	-
$k_{AI}(day^{-1})$	0.27 (18)	-	168 (19)	16 (50)	32 (45)	-	0.068 (6)	23 (41)
k _{A2} (day ⁻¹)	-	-	-	-	-	-	7.51 x 10 ⁻⁵ (12)	-
k _{7r} ^C (day-1)	0.028 (18)	-	-	-	-	-	-	-
Lag time_1(day)	-	-	-	-	4.4 x 10 ⁻³ (23)	-	-	-
Lag time_2(day)	-	-	-	-	-	-	1.57 (7)	
D ₀ (day)	0.028 (9)	-	-	-	-	-	-	-
σ _{Aditt} (%)	54 (2)	-	40 (8.5)	-	53 (17)	-	16	-
σ _{Prop} (%)	-	-	32 (33)	-	-	-	-	-

tes are listed with their corresponding coefficient of variation (CV(%). ved parameter from Weibul function, *Aproximated interindividual variability (IIV) for logit-transformed parameter, i.e. $CV(\theta) = \theta(1-\theta)\omega$, \forall , \forall 2 = 1-F1, \uparrow , kTr = kAI

Pharmacodynamic table of parameters

Pharmacodynamic Parameters	Typical value Estimate	Median* (5-95 th)	IIV %CV	Median* (5-95th)
Faiailleueis			-70CV	
TST0 (ng.mL ⁻¹)	3.98	3.98 (3.43 - 4.55)	35.07	35.2 (31.2 - 41.4)
k _{DB} (day-1)	0.946	0.938 (0.81 - 1.09)	-	
E ₅₀	0.0247	0.025 (0.022 - 0.027)	31.36	31.9 (30.8 - 41.1)
k _{RE0} (days ⁻¹)	0.21	0.21 (0.19 - 0.24)	32.09	32.6 (31.8 - 39.7)
k _{IN} (ng·mL ⁻¹ ·days ⁻¹)	0.036	0.036 (0.031 - 0.042)	35.77	36.3 (34.4 - 47.1)
k _{DTT} (days ⁻¹)	0.59	0.59 (0.52 - 0.72)	-	-
AGN (ng·mL ⁻¹ ·day ⁻¹)	0.335	0.34 (0.31 - 0.39)	-	-
σ _{Aditt} (%)	44.7	44.7 (40.9 - 47.2)	-	-

*, Results obtained from	I nonparametric bootstrap 200 samp	les , IIV, Interindividual variability
Description of the state of the state of the	an e del solo sono	

	РК	PKPD
udy 1	(Ing one Appress (right))	(Tungger) Toto (Data)
udy 2	Total construction of the second seco	(n)
udy 3	Lag care formation (grant (gra	Indicate the second sec
Study 4	0 50 100 100 Treatment	0 90 100 100 200 200 Travelated

t (μg.day.L⁻¹) Predicted Median* (5-95th)

29.22 (24.41-34.81) 18.07 (13.99-23.37)

28.33 (24.78-32.03

21.23 (16.62-27.54) 42.00

Castration time (days)

Median

278.00 119.97

90.00

Predicted Median* (5-95th)

42.0 (0 - 119)

178.99 (74 - 314) 111.06 (0 - 245)

83.00 (34

AUC

Observed Median

27.10

32.27 19.21

27.88

Cmax (ng/mL)Testosterone

Predicted Median* (5-95th)

2.47 (1.73 - 3.24)

2.35 (1.59 - 3.16) 2.34 (1.57 - 3.17)

2.46(1.65 - 3.33)

Observed Median

2.23

1.88 1.77

Performance of fitted individuals

Conclusions A mechanism-based PD model was successfully developed allowing us to explore the influence of receptors occupancy and the effect of a prolonged administration of a GnRH agonist on testosterone

Bibliography [1] PAGE 18 (2009) Abstr 1563 [www.page-meeting.org/?abstract=1563] [2] E.B. Roberts. Making system dynamics used/ui: a personal memoir. System Dynamics Review. 23:119-136 (2007) [3] Tomoe, et al. Population pharmacokinetic/pharmacd/warmic (PK/PD) modeling of the hypothalamic-pituitary-gou following treatment with GnRH analogues. B. J. Clin. Pharmacol. 2007 (jun); 63(6): 648-64 [4] PAGE 18 (2009) Abstr 1604 [www.page-meeting.org/?abstract=1604]

127 O

[•] Pharmacokinetic simulated from Bayesian predictions parameters previously reported [1].