Population Pharmacokinetics and Effect of Voriconazole in Adults Patients for Concentrations Profile Optimization

C Csajka ^{1,4*}, A Pascual ^{2*}, S. Bolay S², J Bille ³, T Calandra ² O Marchetti², T Buclin¹ * contributed equality to the work

¹Division of Clinical Pharmacology and Toxicology, ²Infectious Diseases Service, and ³Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, ⁴Clinical Pharmacy Unit, Department of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Switzerland

Introduction

- Voriconazole (VRC) is a recently commercialized antifungal azole with potent activity against a broad spectrum of medically important fungi.
- It is characterised by a large inter- and intra-patient variability, attributed to genetic polymorphism of CYP2C19 ad non genetic factors which include age, liver disease, drug-drug interactions
- Increasing evidence have shown a correlation between voriconazole exposure and either failure to therapy and/or toxicity
 - Dosage individualization based on plasma concentration monitoring (TDM) needs to be confirmed

Aim of the study

- o to describe VRC population kinetics in severely ill patients
- to estimate inter and intrapatient variability and the influence of demographic, physiopathological and environmental factors on VRC kinetics
- o to derive concentration-effect/toxicity relationships
- to define a dosing regimen achieving appropriate drug exposure in order to improve voriconazole efficacy and safety profiles

Methods

Population:

505 plasma samples from 55 consecutive adult inpatients over a 30-month period receiving VRC treatment

Treatments:

VRC orally (100-400 mg) or iv (body-weight adjusted regimen) twice daily, adjusted according to TDM

Covariates:

sex, body weight, age, co-medications, cholestic hepatitis (severe alkaline phosphatase (A Ph) and/or gammaglutamyltransferase (GGT) increased levels)

Bioanalysis:

VRC blood levels were measured on days 2, 7, and 14 of antifungal therapy and analysed by HPLC

Population PK (NONMEM® program version VI)

- A linear 1-compartment model with first order absorption and elimination on log-transformed data was used
- Inter-patient (IIV) on CL and F and inter-occasion (IOV) variability on F was assigned using exponential random effects
- Covariate analysis: linear relationships between pharmacokinetic parameters and covariate effect
- Derived parameters from the final Bayesian estimates:
 - log-transformed VRC exposure (AUC_{12h})
 - log-transformed peak (C_{max}) & trough (C_{min}) levels

PK-effect relationship

Individual AUC_{12h}, C_{max} and C_{min} and time of exposure were correlated with treatment outcome (relapse) and SNC toxicity using logistic regression models (Stata version 10)

Simulations

- VRC concentration-time profile in 1'000 individuals after 200 mg, 300 mg or 400 mg twice daily (iv and oral administration)
- These simulations allowed to derived the concentrations under 1 mg/L at trough in more than 80 % of patients with a minimun number of
 - patients exceeding the 5 mg/L limit.

References

- A. Pascual et al.Voriconazole Therapeutic Drug Monitoring in Patients with Invasive Mycoses Improves Efficacy and Safety Outcomes. Clinical Infectious Diseases 2008; 46:201–11
- Variability of Voriconazole Plasma Levels Measured by New High-Performance Liquid Chromatography and Bioassay Methods. AAC 2007; 51:137–143

Results: PK POP

VRC pharmacokinetic parameter estimates:

	Population mean		Interindividual variability *	
Parameter	Estimate	Cl ₉₅ ^b	Estimate (%)	s.e ^c (%)
CL (L/h)	5.2	4.0-6.3	40	50
V (L)	92	63-120		
ka (h ⁻¹)	1.1	0.6-1.6		
F	0.63	0.30-0.87	84 ⁹	68
θ d rifampicin	3.0	2.4-3.6		
θ echolestasis	- 0.52	0.42-0.62		
IOV ^h	93	52°		62
σ _{prop} (CV %) ^f	59			34

- CL, clearance; V, volume of distribution of the central compa bioavailability. IOV interoceasion variability
- bioavailability: IOV interoceasion variability.

 settimates of variability expressed as a coefficient of variation (CV%).

 Software on fidence interval around the mean estimate. For F, the antilog of the 95 % CI derived
- from the logit function is reported. s.e. = standard error of the coefficient of variations, taken as $\sqrt{s.e_{estimate}}$ / estimate, expressed
- s.e. = standard error of the coefficient of variations, taken as as a percentage.
- ⁴ relative increase in CL in presence of rifampicine coadministration relative decrease in CL in case of severe hepatic cholestasis
- ^f residual variability in the plasma concentrations expressed as coefficient of variation CV stimates of variability on F within the logit function.
- h interoccasion variability within the logit function
- A significant inter-dose variability in VRC oral bioavailability was observed
 A decrease in CL by 52 % was observed in patients showing signs of a
- grade 3 A Ph and/or GGT increased levels

 VRC elimination was markedly increase (300 %) by co-administration
- VRC elimination was markedly increase (300 %) by co-administration with rifampicine
- A modest but non significant inhibition of VRC by the CYP2C19 inhibitor omeprazole (20%) was observed
- VRC kinetics was linear over the 100-400 mg dosage regimen

Figure 1: left pand VEC for shy-frame plasma concentration normalized for a 200 mg areal dore (open criefla, n=13) and after a 400 mg loading dore (black criefe, n=23). Right pand VEC for eady-state plasma concentrations (open criefe, n=126) normalized for a 300 mg intravenous dore (15 h thorinfinion). The tool distar represents the population prediction m the dathed lines the 20% prediction intraval.

Results: Concentration-Effect Relationships

- VRC AUC_{12h} and C_{min} are significant predictor of antifungal response after oral (p < 0.03, OR = 2.5 Cl95 1.1-5.7) but not after iv administration of the drug (p = 0.9)
- C_{min} or AUC_{12h} and time of exposure revealed a stronger correlation with antifungal response (p < 0.0001, OR = 3.1 Cl₉₅ 1.4-6.6)
- A significant association between AUC_{12h}, C_{min} or C_{max} and neurotoxicity (p < 0.0001) was observed, independently of the time of exposure and the route of administration.
- The logistic regression model associates a probability of successful outcome of 82 % at a concentration of 1 mg/L and 93 % at 4 mg/L, the 5 mg/L level being however linked to a 20 % probability of neurotoxicity

OT DEUIFOLOXICITY vorinconazole Crossifier Vorinconazole Crossifier

Dosage regimen recommendations

- An oral dosage regimen of 300 mg twice daily is better suited than the currently recommended dosage of 200 mg twice daily to achieve drug concentration within the therapeutic range of 1-5 mg/L to optimize efficacy and safety outcomes
- The large variability in VRC absorption and elimination suggests the need of TDM to identify individuals with inappropriate exposure in order to adjust their dosage regimen.