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Background
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• Discrete type data are increasingly popular   
describing e.g. pharmacodynamic outcomes.

• Optimal design (OD) is a useful tool for 
optimizing studies.

=> Need for OD on models for discrete type data



Some previous work in the area

• This concept is not new, e.g. Generalized 
Linear Models.*

• However, currently numerous issues arise with 
OD computation:
• Exponential family (binomial, Poisson,…)
• One must know link function, mean function 

for each model family

• In this work we attempt to provide a general 
method for categorical data models based on 
simulation of data.

3
* Longford, Breslow, Duffull, Ogungbenro etc.
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Introduction Optimal design
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( ) ( )1
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−
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Cramér-Rao inequality*:

* holds regardless of whether the data is discrete or not

for an unbiased estimator
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Derivation of FIM for discrete type data
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( ) ( ), ,x obsFIM x E FIM x⎡ ⎤Θ = Θ⎣ ⎦

( )

No analytic solution to likelihood for ME – models.

( )2 log ,
, obs

obs T

L x
FIM x

∂ Θ
Θ = −

∂Θ∂Θ

We need higher order approximation than FO=>
Pop likelihood calculate with Laplace or Monte Carlo

*

* FIMobs is what you get from $COV MATRIX=R
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Design setup
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• D-optimal design – maximizing the 
determinant of FIM

• Expectation over data evaluated by Monte 
Carlo Integration

1. Generate a data set from some 
distribution

2. Calculate FIMobs given the data by 
calculating pop likelihood with:

- Laplace Approximation
- Monte Carlo Integration (“exact” if n->∞)
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Dichotomous Model

1 random effect, 50 individuals with 30 doses/individual 
each split into 3 dose levels (one fixed to 0).
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Dichotomous Model – PI
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Dichotomous Model - Results

NONMEM
Laplace

PopED Laplace PopED MC

-2LL observed 1631.912 1631.912 1631.877

Avg RSE(FIMobs) 26.8% 26.8% 26.0%

Avg RSE(E[FIMobs]) 27.9%* 26.8% 26.8%

* 1000 sim/est empirical SE calculated from estimates
Observed: For each individual: 10 obs at placebo, 0.25 & 0.45 units.
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1 Observed |FIM| versus Dose
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Results - Optimal Designs – 100 obs FIM

Dose2 (units) Laplace, det(FIM) MC, det(FIM)
0.44 5.89e+5 6.00e+5

0.50 5.91e+5 5.98e+5

Red = optimal

Dose1 = 0, Dose2 dependent on the method

Different results with different calculation methods!
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Expected |FIM| – Laplace vs. MC

Expected FIM, calculated as 100 Obs FIM

MC |FIM|Laplace |FIM|

Dose 1 Dose 1Dose 2 Dose 2
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Expected |FIM| – Differences (Lap, MC)

Optimal

Laplace>MC

Laplace=MC

Laplace<MC
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Poisson Model – 1 Random effect

1 random effect, 20 individuals with 90 obs./ind. split into
3 dose levels.
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PI - Poisson Model
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Poisson Model - Results

NONMEM
Laplace

PopED Laplace PopED MC
(1 000 000 samples)

-2LL observed 3809.66 3809.66 3809.63

Avg RSE(FIMobs) 22.0% 21.9% 22.2%

Avg RSE(E[FIMobs]) 19.1%* 18.6% 18.4%

* 1000 sim/est empirical SE calculated from estimates
30 obs/ind at dose 0, 0.4 0.7
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Expected |FIM| Laplace versus MC

Laplace |FIM| MC |FIM|

Dose 2Dose 1 Dose 2Dose 1
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• Optimal design on Mixed Effects models for discrete 
type data was successfully implemented in PopED 2.09 
with:

– Laplace approximation
– Monte Carlo Integration

• Optimal design differs between calculation methods

• Time consuming => faster/more efficient  algorithms are 
needed, e.g. parallelization, SAEM.

• This technique is general (if likelihood can be calculated 
method should work).  Applicable for OD on models for 
other types of data/models, e.g. BQL-data, TTE/RTTE, 
Order/Non-order categorical, Markov model, discrete 
distributions etc.

Conclusions
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Thank you
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Thank you for your attention!
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