

Population optimal experimental design for discrete type data

Joakim Nyberg, Mats O. Karlsson and Andrew C. Hooker

Pharmacometrics research group Department of Pharmaceutical Biosciences Uppsala University

- Discrete type data are increasingly popular describing e.g. pharmacodynamic outcomes.
- Optimal design (OD) is a useful tool for optimizing studies.

=> Need for OD on models for discrete type data

Some previous work in the area

- This concept is not new, e.g. Generalized Linear Models.*
- However, currently numerous issues arise with OD computation:
 - Exponential family (binomial, Poisson,...)
 - One must know link function, mean function for each model family
- In this work we attempt to provide a general method for categorical data models based on simulation of data.
- * Longford, Breslow, Duffull, Ogungbenro etc.

Introduction Optimal design

Cramér-Rao inequality*:

$$FIM\left(\vec{\Theta},\vec{x}\right)^{-1} \le COV\left(\vec{\Theta},\vec{x}\right)$$

for an unbiased estimator

* holds regardless of whether the data is discrete or not

Derivation of FIM for discrete type data

$$FIM\left(\vec{\Theta}, \vec{x}\right) = E_{x}\left[FIM\left(\vec{\Theta}, \vec{x}_{obs}\right)\right]$$
$$FIM\left(\vec{\Theta}, \vec{x}_{obs}\right) = -\frac{\partial^{2}\log L\left(\vec{\Theta}, \vec{x}_{obs}\right)}{\partial \vec{\Theta} \partial \vec{\Theta}^{T}} *$$

No analytic solution to likelihood for ME – models.

We need higher order approximation than FO=> Pop likelihood calculate with Laplace or Monte Carlo

* FIM_{obs} is what you get from \$COV MATRIX=R

Design setup

- D-optimal design maximizing the determinant of FIM
- Expectation over data evaluated by Monte Carlo Integration
 - 1. Generate a data set from some distribution
 - 2. Calculate FIM_{obs} given the data by calculating pop likelihood with:
 - Laplace Approximation
 - Monte Carlo Integration ("exact" if n->∞)

Dichotomous Model

1 random effect, 50 individuals with 30 doses/individual each split into 3 dose levels (one fixed to 0).

$$\theta_{1} = -0.5 \quad \theta_{1}^{2} = 0.$$

$$\theta_{2} = 5 \qquad D = [0,$$

$$\theta_{2} = 5 \qquad D = [0,$$

$$\theta_{2} = 5 \qquad D = [0,$$

$$\theta_{1} = e^{\theta_{1} + \eta_{1} + \theta_{2} \cdot D}$$

$$like = \begin{cases} p & \text{if } DV = 1\\ 1 - p & \text{if } DV = 0 \end{cases}$$

1

1]

Dichotomous Model – PI

Dichotomous Model - Results

	NONMEM Laplace	PopED Laplace	PopED MC
-2LL observed	1631.912	1631.912	1631.877
Avg RSE(FIM _{obs})	26.8%	26.8%	26.0%
Avg RSE(E[FIM _{obs}])	27.9%*	26.8%	26.8%

* 1000 sim/est empirical SE calculated from estimates Observed: For each individual: 10 obs at placebo, 0.25 & 0.45 units.

1 Observed |FIM| versus Dose

UPPSALA UNIVERSITET

1 Obs|FIM| Surface from Laplace integrated Dichotomous data, seed=5489

MC, LHS = 10

|FIM| Surface from MC integrated Dichotomous data, seed=5489, LHS=10

10

Results - Optimal Designs – 100 obs FIM

Dose1 = 0, Dose2 dependent on the method

Dose2 (units)	Laplace, det(FIM)	MC, det(FIM)
0.44	5.89e+5	6.00e+5
0.50	5.91e+5	5.98e+5

Red = optimal

Different results with different calculation methods!

Expected |FIM| – Laplace vs. MC

Expected FIM, calculated as 100 Obs FIM

Expected |FIM| – Differences (Lap, MC)

Surface of det FIM Laplace - MC

Poisson Model – 1 Random effect

1 random effect, 20 individuals with 90 obs./ind. split into 3 dose levels.

$$\theta_{1} = 1 \qquad \theta_{1}^{2} = 0.1$$

$$B = \theta_{1} \cdot e^{\eta_{1}} \qquad \theta_{2} = 0.5 \qquad D = [0,1]$$

$$\lambda = B \cdot \left(1 - \frac{D}{D + D_{50}}\right)$$

$$-2ll = -2 \cdot \left(-\lambda + n \cdot \ln(\lambda) - \ln(n!)\right)$$

$$\ln(n!) = \begin{cases} n \cdot \ln(n) - n + \frac{\ln(n \cdot (1 + 4n \cdot (1 + 2n)))}{6} + \frac{\ln(\pi)}{2} & \text{if } n > 0\\ 0 & \text{if } n = 0 \end{cases}$$

PI - Poisson Model

15

Poisson Model - Results

	NONMEM Laplace	PopED Laplace	PopED MC (1 000 000 samples)
-2LL observed	3809.66	3809.66	3809.63
Avg RSE(FIM _{obs})	22.0%	21.9%	22.2%
Avg RSE(E[FIM _{obs}])	19.1%*	18.6%	18.4%

* 1000 sim/est empirical SE calculated from estimates 30 obs/ind at dose 0, 0.4 0.7

Expected |FIM| Laplace versus MC

Laplace |FIM|

MC |FIM|

|FIM| Surface (100 Obs FIM) from Laplace integrated Dichotomous data, seed=12312 |FIM| Surface (100 Obs FIM) from MC integrated Dichotomous data, seed=12312, LHS=50

Conclusions

- Optimal design on Mixed Effects models for discrete type data was successfully implemented in PopED 2.09 with:
 - Laplace approximation
 - Monte Carlo Integration
- Optimal design differs between calculation methods
- Time consuming => faster/more efficient algorithms are ۲ needed, e.g. parallelization, SAEM.
- This technique is general (if likelihood can be calculated method should work). Applicable for OD on models for other types of data/models, e.g. BQL-data, TTE/RTTE, Order/Non-order categorical, Markov model, discrete distributions etc. 18

Thank you for your attention!