Pharmacokinetic Bioequivalence Analysis of Biologics Using Nonlinear Mixed Effects Modeling

Anne Dubois⁽¹⁾, Sandro Gsteiger⁽²⁾, Sigrid Balser⁽³⁾, Etienne Pigeolet⁽²⁾, Jean-Louis Steimer⁽²⁾,

Goonaseelan Pillai⁽²⁾ and France Mentré⁽¹⁾

⁽¹⁾INSERM UMR 738, University Paris Diderot, Paris, France; ⁽²⁾Novartis Pharma AG, Basel, Switzerland; ⁽³⁾ HEXAL AG, Sandoz Biopharmaceuticals, Holzkirchen, Germany;

nserm

Background

- Standard bioequivalence analysis (FDA^[1] and EMEA^[2]) for chemical drugs + \diamond Compute AUC and $\mathrm{C}_{\mathrm{max}}$ by non compartmental analysis (NCA)
- Test on log parameters using linear mixed effects model
- ◆ Biologic drug: complex structure → biosimilarity rather than bioequivalence ♦ Biosimilarity analysis: pharmacokinetics (PK), efficacy, toxicity...
- Nonlinear mixed effects models (NLMEM)
- Simultaneous data analysis for all subjects

Objective: illustrate how to perform a NLMEM-based PK bioequivalence analysis using data of two biosimilary trials

NLMEM-based bioequivalence

- NLMEM bioequivalence analysis^[3,4]
- ♦ Statistical model
 - × PK model (determined using reference formulation data)
 - × Between (BSV) and within subject (WSV) variability if data from crossover trial
 - Treatment (β), period, and sequence effects
- Parameter estimation by maximum likelihood
- SAEM algorithm implemented in MONOLIX 3.2^[5,6]

Bioequivalence Wald test

- ↔ H₀: { β ≤ log(0.8) or β ≥ log(1.25) }
 - ▼ Rejection of H_0 : $CI_{90\%}(\beta) \in [log(0.8); log(1.25)]$
- × $CI_{90\%}$ computed from the estimated β and its standard error (SE)
- ♦ Wald test on secondary parameters^[4]
 - × Estimation of β and its SE by delta method or simulations

Somatropin (growth hormone)

- Single dose, crossover trial on 35 healthy volunteers^[7]
 - ♦ 3 formulations, 3 periods, 6 sequences
 - ▼ Genotropin[®] by Pfizer: 5 mg/ml powder formulation (reference)
 - ▼ Omnitrope[®] by Sandoz: 3.3 mg/ml solution (T₁) and 5mg/ml powder (T₂) \diamond Single subcutaneous dose of 5 mg at each treatment period
 - ▼ 12 samples per period
- ✤ Sparse datasets with 6 samples per period
- \diamond Optimized design (OD): sampling times optimized using PFIM 3.1^[8]
 - ▼ NLMEM parameter estimates of Genotropin[®] data
 - ▼ Fedorov-Wynn algorithm
- Empirical design (ED): sampling times determined by a PK modeller

Individual plots of the three somatropin datasets for each formulation (LOQ=0.2 ng/mL)

◆ PK modeling: one-compartment with linear elimination						
		t _{lag} (h)	k _a (h ⁻¹)	V/F (L)	CL/F (L/h)	corr _{CL-V}
	$\mu_{\rm R}$	0.49 (0.07)	0.32 (0.07)	26.22 (0.1)	8.63 (0.03)	
	β_{T1}	-0.22 (0.07)	-0.2 (0.07)	-0.12 (0.1)	0.01 (0.03)	
	β_{T2}	-0.07 (0.06)	-0.06 (0.08)	0.07 (0.11)	0.05 (0.03)	
	BSV	0.33 (0.05)	0.18 (0.04)	0.44 (0.04)	0.23 (0.02)	0.81
	WSV	0.09 (0.04)	0.19 (0.03)	0.26 (0.03)	0.1 (0.01)	0.49
	a (ng/mL)	0.11 (0.02)				
	b	0.14 (0.004)				

Parameter estimates (SE) obtained by MONOLIX 3.2 for the complete data

(μ_{R} : mean PK parameters for Genotropin[®], period and sequence effects not reported)

 [1] FDA. Ucm070244. (2001)
 [5] Panhard X and Samson A. Biostatistics (2009)

 [2] EMA. CPMP/EWP/QWP/101/98 Rev. 1. (2010)
 [6] www.monolix.org

 [3] Dubois A et al. Pharm Rev (2010)
 [7] Fuhr U et al. Eur J Endocrinol (2010)

 [4] Dubois A et al. Stat Med (in press)
 [8] www.pfim.biostat.fr

NCA for each dataset

etric means and $CI_{95\%}$ estimated by NLMEM and NCA for each dataset and somatropin formulation

♦ Geometric mean estimates

- \star Difference in NCA estimation for ED and OD datasets \rightarrow importance of the design ▼ Stable NLMEM estimation
- Bioequivalence test: Omnitrope[®] powder and solution bioequivalent to Genotropin[®] by NLMEM and NCA

Erythropoetin alpha (EPO)

- Multiple dose, parallel group trial on 75 healthy volunteers^[9]
 - ♦ Two formulations
 - ▼ Erypo[®] by Johnson & Johnson (reference, 38 subjects)
 - ▼ EPO Hexal[®] by Sandoz (test, 37 subjects)
 - \diamond 11 IV doses of 100 IU/kg on 4 weeks
 - ▼ Baseline (day 1) and trough (day 8, 15, 19, 22 and 24) concentrations
 - ▼ Complete PK with 19 sampling times after the 11th dose
- ◆ PK modeling: two-compartment with linear and Michaelis-Menten elimination
 - Approximation of a target drug mediated disposition model

$$\frac{dC_c(t)}{dt} = \frac{Q}{V_c} C_p(t) - \frac{Q}{V_c} C_c(t) - \frac{CL_{lin}}{V_c} C_c(t) - \frac{V_{max}C_c(t)}{V_c(K_m + C_c(t))}$$

$$\frac{dC_p(t)}{dt} = \frac{Q}{V_n} C_c(t) - \frac{Q}{V_n} C_p(t)$$

with $C_c(0) = C_p(0) = 0$ for each time dose $C_1(t^+) = C_1(t^-)$

(IU/h)

341.22

(IU/L)

90.83 8.26

(IU/L) CL_{lin}.

× Measured concentration: $C_0+C_e(t)$ with C_0 the endogenous baseline concentration a of the dee .l., .l:.....

$$Dase = CL_{i} \times AUC + \left[\frac{V_{max}(t)}{V_{max}(t)} \times C_{i}(t)dt \rightarrow PDNF = 1 - \frac{CL_{iin} \times AUC}{V_{max}(t)}\right]$$

$$ose = CL_{iin} \times AUC + \int \frac{V_{max}(t)}{K_m + C_c(t)} \times C_c(t) dt \Rightarrow PDNE = 1 - \frac{UL_{iin}}{Dose}$$

V. (L) V. (L)

0.34

CL_{lin} (L/h) Q (L/h)

0.36

Individual plots of the EPO dataset for each formulation (LOQ=2.5 mIU/mL)

 \diamond PDNE ratio estimated to 0.95 with CI_{90%} [0.72; 1.24]

EPO Hexal[®] bioequivalent to Genotropin[®] by NLMEM and NCA

Conclusion

+ Similar bioequivalence test results using NLMEM and NCA (both examples)

- NLMEM-based bioequivalence analysis
 - Good estimation of the NLMEM parameters even for sparse design Stable estimation of the geometric means (contrary to NCA)
 - Analysis of specific PK parameters not available by NCA

Taking into account data below LOQ

🕛 novartis

SANDOZ