

Eleven ordered categories data: which modelling options?

Elodie L. Plan, Yang Sun and Mats O. Karlsson

Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden.

Background

Ordered categorical data:

- If "low" # of categories \rightarrow <u>ordered categorical model (OC)</u>, if "high" # of categories \rightarrow <u>continuous model (CO)</u>.
- ◆11 categories [from 0 (no pain) to 10 (worst pain)] data, like the Visual Analogue Scale (VAS) or the Likert Scale:
- → Which model(s) should be used for the analysis?
- → Is a generalized Poisson model (GP) also an option?
- **Objectives:** To evaluate models adapted for 11-point data - To assess their capability of estimating a simulated drug effect

Methods		
Simulations	Estimations	Simulations
oc	GP CO	GP CO

• Step 1 = Original simulations OC:

231 individuals, ≅100 observations/ID (1/day over 18 weeks) • Real placebo observations¹ analysed; obtained parameters

used to perform 100 simulations of baseline data. • Dose levels (0, 100, 200, 300) set up; drug effect (0.045)

Figure 1: Proportions of the 11 pain scores from the 100 simulations with the OC model (step 1) for baseline data (left) and drug data (right).

Step 2 = Estimations

OC:

- True proportional odds model: 10θ , 1η
- Linear drug effect (in the logit): *Slope×e^η×Dose* GP:
- 11-truncated generalized Poisson model: 1λ , 1δ , 2η

• Polynomial drug effect: (Slope₁×Dose + Slope₂×Dose²) ×e^η <u>CO:</u>

- 10-fold logit transformed continuous model: 1λ , 1η , 1ε
- Polynomial drug effect (in the logit)

Step 3 = Final simulations

Each vector of estimated parameters used to generate a simulated dataset for evaluation purposes.

Results

- A truncated generalized Poisson model performs well,
- A logit-transformed continuous model presents less accurate results when a drug effect is included.

Conclusion

• Although seldom used for Likert data, the OC model performs well. The other models may be alternatives for sparser data sets and in the presence of serial correlations.

Reference

¹ Plan *et al.* New models for handling correlated underdispersed Likert pain scores. *PAGE* 2009. <u>Contact:</u> Elodie.Plan@farmbio.uu.se