
TMDD Model for Drugs that Bind Soluble and Membrane-Bound Targets: Can Quasi-Steady-State Approximation Estimate Unobservable Membrane-Bound Target Occupancy?

Leonid Gibiansky, Ekaterina Gibiansky

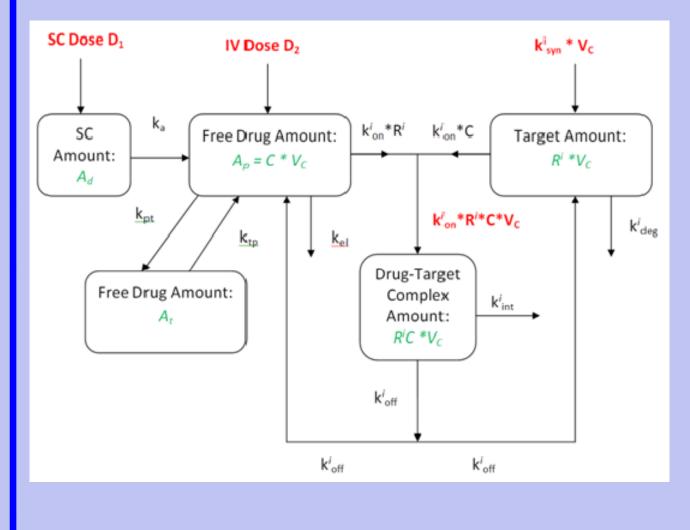
QuantPharm LLC, North Potomac MD, USA;

PAGE 2010, June 8-11, Berlin, Germany

OBJECTIVES

- To develop an approach for description of drugs with target-mediated drug disposition (TMDD) that bind to soluble (S) and membrane-bound (M) targets;
- To demonstrate on the simulated example that models based on the quasi-steadystate (QSS) approximation can identify parameters of both targets based on the free drug and the total S-target concentrations.

METHODS


Multi-Target TMDD: Red: input; *Green:* amounts; Black: rate constants. Target *i* is shown. Flux = rate * amount

Single-Subject Simulations

TMDD and QSS models were compared by simulation of free drug and total S-target concentration profiles for several sets of parameters and doses.

Population PK-PD simulations

- Typical Phase 1 Phase 2 dataset was simulated using two-target full TMDD model:
 - \checkmark 224 subjects following single or multiple-dose administration of 100 to

Shown. Frux – Fact variation Two-target (S and M) QSS equations $\frac{dA_{d}}{dt} = -k_{a}A_{d}; \quad A_{d}(0) = D_{1}; \quad C_{tot} = C + R^{s}C; \quad R_{tot} = R + R^{s}C;$ $\frac{dC_{tot}}{dt} = \frac{F_{SC}k_{a}A_{d} + k_{tp}A_{T}}{V_{c}} - (k_{el} + k_{pt})C - \frac{R^{s}_{tot}K^{s}_{int}C}{K^{s}_{SS} + C} - \frac{V^{M}_{max}C}{K^{M}_{SS} + C};$ $\frac{dA_{T}}{dt} = k_{pt}CV_{c} - k_{tp}A_{T};$ $\frac{dR^{s}_{tot}}{dt} = k^{s}_{syn} - k^{s}_{deg}R^{s}_{tot} - (k^{s}_{int} - k^{s}_{deg})\frac{R^{s}_{tot}C}{K^{s}_{SS} + C};$ $C_{tot}(0) = D_{2}/V_{c}; \quad R^{s}_{tot}(0) = R^{s}_{0} = k^{s}_{syn}/k^{s}_{deg}; \quad V^{M}_{max} = R^{M}_{0}k^{M}_{int}.$ $C = \frac{1}{2} \Big[(C_{tot} - R^{s}_{tot} - K^{s}_{SS}) + \sqrt{(C_{tot} - R^{s}_{tot} - K^{s}_{SS})^{2} + 4K^{s}_{SS}C_{tot}} \Big]$

Assumptions

- Drug-M-target complex elimination is fast, and total M-target concentration is constant. Therefore, MM approximation is valid;
- Drug-S-target complex elimination is slow, accumulation is significant. Therefore, QSS approximation should be used.

Limitations

Equations describe the drug that binds to only one target at a time. To describe drugs that bind to several targets simultaneously, the TMDD system needs to be modified to account for kinetics of all drug-multiple targets complexes.

- 1000 nmol IV and SC doses;
- ✓ Rich data: 3250 free (unbound) or total (unbound and bound to S-target) drug concentrations and 3305 total (unbound and bound to the drug) Starget concentrations;
- ✓ Quantification limit of 0.1 or 0 nmol/L for drug and target data;
- ✓ Moderate (20% CV) inter-subject variability;
- ✓ Moderate (15-20% CV for drug and target data, respectively) residual variability;
- Four models were fitted to the data:
 - ✓ M1: one-target QSS model *ignored PK contribution of M-target*;
- ✓ M2: empirical combination of Michaelis-Menten (PK) and QSS (S-target) models - *ignored PK contribution of S-target*;
- ✓M3: two-target QSS model;
- ✓M4: full two-target TMDD model *true model*;
- Two-sets of initial estimates: true (test 1) or randomly perturbed by 50-200% but within a reasonable range of parameters (test 2).
- Simulation and estimation were conduced using Nonmem 7[®] software;
- FOCEI was used for all estimation runs.

RESULTS

		neters Used for Simula	tion		
	meter (Unit)	Explanation		Value	Comment
	ar part of the m			1	
CL	(L/day)	Linear clearance		0.3	Typical for fully- human therapeutic antibodies
V _c	(L)	Central volume		3.0	
Q	(L/Day)	Inter-compartment clearance		0.2	
Vp	(L)	Peripheral volume		3.0	
F _{SC}		SC bioavailability		0.7	
		SC absorption rate cor	sorption rate constant		
0	meters of the S-	target		-	
k ^s on	(L/nmol/day)	Association constant		10	Within typical
k ^S _{off}	(1/day)	Dissociation constant		0.1	range
k ^S _{int}	(1/day)	Internalization rate		0.05	Similar to k _{el}
	Syn (nmol/L/day) Syntheses rate			1	Consistent with
k^{S}_{deg} (1/day)		Degradation rate		10	literature data
~ ``	nmol/L)	Baseline concentration	n	0.1 ^a	$=k^{S}_{syn}/k^{S}_{deg}$
K^{S}_{SS} (nmol/L) QSS constant				0.015 ^{<i>a</i>}	$=(k^{S}_{off}+k^{S}_{int})/k^{S}_{on}$
~ ~ ~	meters of the M	-target		•	
	(L/nmol/day)	Association constant		5	Within typical
k ^M _{off} (1/day)		Dissociation constant		0.25	range
k ^M _{int}	(1/day)	Internalization rate		15	Similar to k _{deg}
k ^M _{syn}	(nmol/L/day)	Syntheses rate		1.5	Consistent with
k^{M}_{deg} (1/day)		Degradation rate		15	literature data
R^{M}_{0} ((nmol/L)	Baseline concentration		0.1 ^a	$=k^{M}_{syn}/k^{M}_{deg}$
	(nmol/L/day)	Maximum elimination rate		1.5^{a}	$=k^{S}_{syn}k^{M}_{int}/k^{S}_{deg}$
K^{M}_{SS} (nmol/L)		QSS constant		3.05 ^{<i>a</i>}	$=(k^{M}_{off}+k^{M}_{int})/k^{M}_{on}$
^a Der	ived parameters;	^b Rate constants are: k _{el}	$=CL/V_c, I$	$K_{pt} = Q/V_c, k$	$K_{tp} = Q/V_p.$
Table	2 Summary of Si	mulation Scenarios	_		
Set	Models	Available data	BQL trea		Parameter values
1	M1, M2, M3,	Free drug concentration; total S-	BQL values excluded		As in Table 1, i.e. $k_{syn}^{S}=1.0, k_{syn}^{M}=1.5$
	M4				
2	M1, M2, M3	target concentration	All values included		
3		(Free drug+drug-S-	BQL values		As in Table 1, i.e. $k^{S}_{syn}=1.0, k^{M}_{syn}=1.5$
	M1, M2, M3	target complex)	excluded All values included		
4		concentration; total S- target concentration			
5		Free drug			As in Table 1 but $k_{syn}^{s}=0.5, k_{syn}^{M}=2.5$
	– M1, M2, M3	concentration; total S-			As in Table 1 but
6		target concentration			$k_{syn}^{S} = 2.5, k_{syn}^{M} = 0.5$

Single-subject simulations of the typical dosing regimens indicated that:

- ✓ In the typical range of parameters, the two-target TMDD and QSS models provide nearly identical description of the drug and target concentration data;
- ✓ Relative importance of two elimination routes (S- and M-targets) depends on the ratio k^S_{syn}/k^M_{syn} of their synthesis rates;

Population PK-PD simulations indicated that:

- Use of the full TMDD model was unfeasible (extremely long run times; instability of the model; dependence of the result on initial estimates; large bias in the binding parameter estimates);
- Two-target QSS model correctly estimated all model parameters and predicted decrease of unobserved M-target concentrations from baseline in all cases except when the M-target synthesis rate was significantly lower than the S-target synthesis. In this case, M-target parameter estimates were imprecise and biased;
- Two-target QSS model performed equally well when the total rather than free drug concentrations were available;
- Inclusion of concentrations below quantification limit (of 0.1 nmol/L) has not affected bias and precision of the parameter estimates;
- ✓ One-target QSS model that ignored contribution of the M-target performed

well when the M-target contribution was indeed negligible but provided biased parameter estimates when this contribution was significant.

CONCLUSIONS

- The TMDD model and its approximation were derived for drugs that bind to more than one target;
- ✓ In the range of the parameters typical for the monoclonal antibody that binds soluble and membrane-bound forms of the target, QSS approximation of the TMDD model correctly describes drug and target concentrations;
- A simulation study demonstrated that QSS approximation of the two-target TMDD model provided unbiased and robust estimates of all relevant TMDD parameters.