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Optimal experimental design
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Optimal design, definition?



The optimal design problem

Search domain, D, of possible 
designs.

An objective function, f, that 
measures the imprecison in the 
parameter estimates.

Prior knowledge of the model structure 
and parameters.

f(d)d opt minarg
Dd



PopED (Population Experimental Design)

Nyberg J., Ueckert S., Karlsson  M.O., Hooker A.C., Uppsala University

Population optimal design

http://poped.sf.net



Our optimal design approach

We pioneer the use of set-valued methods based 
on interval analysis and constraint propagation
to estimate parameters in NLME models.

We use this for optimal experimental design.
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We pioneer the use of set-valued methods based 
on interval analysis and constraint propagation
to estimate parameters in NLME models.

We use this for optimal experimental design.



Simple example of constraint propagation

Consider the model

Data: 

Constraints: 
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Simple example of constraint propagation

Solution:
Consider the model

Data: 

Constraints: 
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Simple example of constraint propagation

Rearrange the model

Consider the model

Data: 

Constraints: 
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Simple example of constraint propagation

Rearrange the model

Propagate constraints

Consider the model

Data: 

Constraints: 
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Simple example of constraint propagation

Rearrange the model

Propagate constraints

Consider the model
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Solution:
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Constraint propagation

In general, many parameters, data-points and constraints.

One iterates the constraints and also subdivides the search by 
partitioning the search space. 

Implemented by directed acyclic graphs (DAG's). 

y= x e
− px

Danis A., Hooker A.C., Tucker W. Proc. Int. Symp. on Nonlinear Theory and its Applications  67-70, 2010.



Set-valued parameter estimation

Output consists of boxes that cover the solution.



The optimal design problem

Search domain, D, of possible 
designs.

An objective function, f, that 
measures the imprecison in the 
parameter estimates.

Prior knowledge of the model structure 
and parameters.

f(d)d opt minarg
Dd



The optimal design problem

Search domain, D, of possible 
designs.

An objective function, f, that 
measures the imprecison in the 
parameter estimates.

Prior knowledge of the model structure 
and parameters.

Discrete
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Basic search method

Try a design from the search space
Repeat several times:

Simulate data from the current design
Compute the set of consistent parameters
Evaluate objective function f

Monitor mean f for the tried design 



Basic search method

REPEAT 
Try a design from the search space
Repeat several times:

Simulate data from the current design
Compute the set of consistent parameters
Evaluate objective function f

Monitor mean f for the tried design 
UNTIL no better design is found



Exhaustive search suggests optimal 
sampling times



A heuristic search

Global search 
Entire search domain
Decompose the problem into separate 
groups (same covariates)

D

d



A heuristic search

Global search 
Entire search domain
Decompose the problem into separate 
groups (same covariates)

best solution

Local search 
Part of search domain
No decomposition

D

D

d
opt

d

d



Example of result

PopED PopED Our method

)det(FIMf  )/1( 1 FIMtrf



A general framework

Covariates like dose and time can be defined as intervals.

Given a dose:  

and sampling times with allowed uncertainty  

What is the optimal design?

[4,5]dose

],[   tt-ti



Conclusions

No prior information in form of point estimates for the 
parameters is required (as in local optimal design).

Any covariate can be represented by an interval.

Problems with local minima and model linearisation are 
avoided in the parameter estimation.



Thanks for your attention!

Peter Gennemark
(Mathematical sciences, Göteborg,

Dept. of Mathematics, Uppsala)

in collaboration with

Warwick Tucker, Alexander Danis
(Dept. of Mathematics, Uppsala)

Andrew Hooker, Joakim Nyberg
(Dept. Of Pharmaceutical Biosciences, 

Pharmacometrics, Uppsala)


