

Application of Optimal Design for Disease Progression Studies

Stefanie Hennig¹, Sebastian Ueckert^{1,2}, Joakim Nyberg¹, Andrew Hooker¹, Mats O. Karlsson¹

Department of Pharmaceutical Biosciences, Uppsala University, Sweden.
DFG Research Center MATHEON and Freie Universitaet Berlin, Germany.

Background and Objective

Disease progression (DP) studies are performed to obtain information on the effect of drugs for the long term prognosis on a disease. The aim of this study is to demonstrate an application of optimal design optimizing period lengths (delayed start, treatment, wash-out) for DP studies. Additionally, to characterize drug effects across different mechanisms and magnitudes allowing model discrimination through uncertainty on parameter values and the expectation of the determinant (ED).

Methods

- 3 linear drug effect models (protective (P), symptomatic (S) and protective+symptomatic (PS)) were used in combination with a linear natural history model
- Model parameters:

Baseline natural history	S ₀ =100
Slope natural history	$\alpha_0 = 2$
Baseline symptomatic effect	S _s = 90
Slope protective effect	$\alpha_{p} = 0.2$
Between subject variability on all fixed effect parameters (CV%)	30%
Parameter uncertainty on α_0 (mean, var)	N(2, 0.1)
σ^2_{add}	10
σ^2	22%

- Optimization on: (I) start and stop time of the treatment during the study and (II) simultaneously⁽¹⁾ on period lengths and sampling times
- Study design: total study length of 12 time units, 13 evenly spread fixed observations times
- Additional study designs: without wash-out periods, with more or less samples or observation time
- Effect differentiation: employing ED-optimality with a uniform distribution from 0-100% of total effect on effect parameters (P or S)
- ED-optimality was performed using PopED v.2. (http://poped.sf.net)
- Simulation (n=1000) and re-estimations using NONMEM VI
- RMSE and ME were calculated for 9 particular effect combinations

Results and Discussion

- Optimal start and stop times for the flexible start and stop time design are shown in Figure 1
- Table 1 shows the number of observations which would fall into the three study periods depending on the optimal start and stop time of treatment
- An efficiency loss of 10-40% on average per parameter was found if no observations were taken during the wash-out period
- Simultaneous optimization on sampling times and treatment period improved the efficiency of the designs by 35-50%
- Relative merits of extending the study length compared to increasing the number of samples per individual are shown in Figure 2

Table 1: Optimal design results under the flexible start and stop time design, and designs with no observations during washout.

		Percentage of Observation (%)		
		Before	During	After
Design	Model	Treatment	Treatment	Treatment
Flexible start and stop time design	Protective	0	50	50
	Symptomatic	20	50	30
	Protective + Symptomatic	10	40	50
	Combined Models	10	50	40
	Protective	50	50	-
No washout	Symptomatic	10	90	-
observations	Protective + Symptomatic	50	50	-
	Combined Models	10	90	_

ure 1: Kesuits from optimal designs for different disease progression effect modes under the flexible start and stop turne design showing start an atment as well as sampling times (black dots) during o 12 time units long study. Lenght of Study Period versus Samples per individual

Figure 2. The logarithmic determinate of the Fisher information matrix surface versus study length and samples/individual, extrapolated from 24 tested design optio for the protective and symptomatic model. The blue areas show low information designs and the red areas high information designs.

- Design optimized for a uniform distribution of effects (start time = 1.07, stop time = 6.11) showed good performance in comparison with designs optimal for a specific effect (Figure 3)
- Confidence regions spanning large parts of the parameter range made differentiating between some close effects impossible (Figure 4)
- Low bias for all fixed effect parameters under the tested 9 effect combinations can be shown and the RMSE for 92% of the fixed effect parameters was under 20% (Figure 5,6)

gure 5. Absolute Error shown for the 4 fixed effect parameters under the uniform EDsign (P=rotective effect, S=symptomatic effect)

Conclusion

Reference:

- Results shown in this study illustrate how DP study designs can benefit from formal optimal design analysis
- Additionally we can illustrate how ED-optimality can be used to optimize for a wide range of effects

 Nyberg J, Karlsson MO, Hooker A. Sequential versus simultaneous optimal experimental design on dose and sample times. PAGE 16 (2007) Abstract 1160 [www.page-meeting.org?abstract=1160].