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Because of  the clinical applications, precise  
PK/PD modeling is incredibly important.  

2



PK/PD  
Model 

✓

Treatment 
!

Because of  the clinical applications, precise  
PK/PD modeling is incredibly important.  

2



Robust treatment decisions requires modeling both  
the latent PK/PD process and the measurement.
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No pooling of  data avoids any bias, but at the  
expense of  sparse data and large uncertainties.    
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Complete pooling assumes that all patients are identical, 
reducing variance at the expense of  bias.    
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Partial pooling dynamically trades off  between bias  
and variance to achieve improved inferences.    
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The ultimate utility of  these population models,  
however, depends on how we learn from the data.
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In frequentist statistics we construct estimators, or 
functions of  the data, that resemble the true parameters.
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Estimators can be dangerous because they have trouble 
incorporating uncertainty, leading to poor decisions.
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This is particularly dangerous in population  
models where the clinical data is sparse.
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Bayesian inference embraces uncertainty, constructing  
an entire distribution instead of  just a point estimate.    
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The prior distribution defines a coherent means of  
incorporating additional, regularizating information. 
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Moreover, given a posterior we can incorporate all of  the 
uncertainty into our decision with the expected risk.    
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Z
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The computational challenge with these Bayesian 
methods is that we have to compute expectations.    
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Stan provides state-of-the-art statistical tools for  
efficiently estimating these expectations.    
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