

Simulating Oral Absorption with PK-Sim[®] Methodology and Application Examples

Stefan Willmann, Andrea N. Edginton, Walter Schmitt, Marcus Kleine-Besten, and Jennifer B. Dressman

stefan.willmann@bayertechnology.com

Presentation Overview

- > PK-Sim[®]'s Absorption Model
- Application Examples
 - Example 1
 - Example 2
 - Example 3

PK-Sim® Model-Structure

Real *Integrated Whole Body Model* comprising:

- ⇒ Fully integrated GI-tract
- Biliary tract, enables enterohepatic cycling
- ⇒ Most important organs
- \Rightarrow For each organ:
 - metabolizing pathways
 - different active transporter types (influx, efflux, Pgp-like)

Capability for treating even very sophisticated problems.

PK-Sim® Model-Structure

Real *Integrated Whole Body Model* comprising:

- ⇒ Fully integrated GI-tract
- Biliary tract, enables enterohepatic cycling
- ⇒ Most important organs
- \Rightarrow For each organ:
 - metabolizing pathways
 - different active transporter types (influx, efflux, Pgp-like)

Capability for treating even very sophisticated problems.

PK-Sim®'s Input Parameters

- Lipophilicity (LogMA preferred)
- Plasma Protein Binding (alternatively unbound fraction)
- (effective) Molweight
- pKa values for acids/bases
- Solubility vs. pH table
- Plasma Clearance hepatic/renal (alternatively in vitro metabolisation rates, K_m & V_{max}, ...)

💸 Compound Data		2		
Existing Active		3		
Name	Example Compound			
Lipophilicity	2,200	Log Units 💿 💌		
Protein Binding 🛛 💌	-4,565	Log Kd [mol/l] 💌		
Plasma fu (Human)	0,026			
Mol Weight	468	g/mol		
Effective Mol Weight	446	Halogens		
Compound Type/pKa	Acid/Base	Edit		
pH - Solubility	User defined	Edit		
Plasma CLhep 🛛 💌	8	ml/min/kg 👘 💌		
Plasma CLhep (Human)	8,000	ml/min/kg		
% Blood Flow		35%		
Plasma CLren	4,5	ml/min/kg 🛛 💌		
Plasma CLren (Human)	4,500	ml/min/kg		
% Plasma Flow		47%		
Add To Master Database				

Simulation of Intestinal Transit & Absorption

Principle

Continuous one-compartment model for small intestine:

- Spatially varying properties (effective surface area, pH)
- GI transit described as *plug-flow with dispersion*

Model for Passive Absorption

Intestinal permeability is based on an empirical equation*:

•D. Leahy et al. in *Novel Drug Delivery* and Its Therapeuthic Application (1989)

Model for the intestinal permeability coefficient was build using a data set of 126 marketed compounds with no solubility limitation at therapeutic doses.

An excellent fit was obtained.

All outliers are known to be substrates active transporters.

Presentation Overview

- PK-Sim[®]'s Absorption Model
- > Application Examples
 - Example 1: Dissolution Limited Absorption
 - Example 2
 - ➢ Example 3

Compound X (from ongoing BHC development project)

Properties

- neutral
- medium lipophilicity (LogMA = 2.2)
- MW ~ 450 g/mol
- high permeability (Caco2, animal models)
- low aqueous solubility
- Human study data:
 - single dose under fasted conditions
 - solution: 5 and 10 mg
 - IR tablet: 1.25, 5, 10, 15, 20, 30, 40, 60, and 80 mg (mean particle diameter of IR tablet formulation: 3 µm)

Model for Dissolution-Limited Absorption

Add-on module to dynamically simulate dissolution of polydisperse spherical particles

🔯 Simulation Parameters: Human				x
Species Absorption Distribution	Metabolism & Excre	tion		
GI-Physiology Active Transport	Metabolism Control	led Release		
Dissolution function	PARTICLE 💌			
	_			
Total amount of drug	1,00	mg		- 1
Density of drug material	1	g/cm³		- 1
Aqueous diffusion coefficient	5	x 1E-6 cm²/s		- 1
Thickness of unstirred water layer	20	μm		- 1
Particle O Monodisperse O	Polydisperse			
Particle size distribution	LogNormal 🔹			- 1
Mean of log-distribution	10	μm		- 1
Coefficient of variation	2			- 1
Number of bins	19			- 1
Lower bound of particle radius	0,1	μm	0.1 1 10 100	- 1
Upper bound of particle radius	100	μm	Badius Distribution	- 1
Treat precipitated drug as	Soluble 🔹			- 1
Immediately dissolve particles smaller than	10	nm		- 1

Bayer Technology Services

Simulation of Dose Dependent Exposure

Bayer Technology Services

BAYER

Presentation Overview

- PK-Sim[®]'s Absorption Model
- > Application Examples
 - Example 1
 - > Example 2: Cimetidine PK Variability
 - Example 3

What About Inter-Individual Variability ?

What About Inter-Individual Variability ?

Age Dependence and Variability of Physiological and Anatomical Parameters

Data for the age dependence of physiological parameters relevant for PBPK modelling such as

- body weight, body height, body mass index,
- organ weights, blood flow rates,
- tissue composition (water, lipid, and protein content)
- fractions vascular, interstitial and intracellular

and their <u>variability</u> and <u>cross-</u> <u>correlation</u> were collected in a comprehensive literature search.

Modelling Inter-Individual Variability in PK-Sim[®] with the add-on module "PK-Pop"

😰 PK-Sim® Population Module	
Population Additional Parameters Distribution Results	
Population European (ICRP, 2002)	
Gender O Female O Male O Both 50 ★ % Female Age from 25,00 to 35,00 years ▼	
Height/Weight Relation	
Height □ from 150,00 to 210,00 cm ▼ Weight □ from 55,00 to 120,00 kg ▼ BMI ■ from 12,47 to 53,33 kg / m² Image: Compare the second s	
© Constant Drug Mass 10 mg © Constant Dose 0.14 mg/kg	
Generate No. 100 Create	
Start PK-Pop Simulation Population parameters changed. Please press 'Start PK-Pop Simulation' Save Return to PK-Sim	
	//_

Available Information:

- in vitro dissolution profiles of IR Tagamet[®] tablets plus three experimental CR formulations (400 mg cimetidine)
- *in vivo* data from 12 male volunteers
- PK profiles after iv admin. in same individuals (clearance distribution !)

Exp. Data from: Jantratid et al., Clin. Pharmacokin. (2006;45(4):385-99)

- 100 virtual individuals (age, weight and height matched) with varying gastric emptying time (15–45 min.) and small intestinal transit time (2,5–5,5 h)

Simulating Drug Absorption Dr. Stefan Willmann, PAGE 2006

Population Simulation:

Bayer Technology Services

(unpublished data, Marcus Kleine-Besten, Univ. Frankfurt)

Eudragit 7,5 %

In vitro release profile:

Bayer Technology Services

Eudragit 15 %

In vitro release profile:

Bayer Technology Services

Eudragit 26 %

In vitro release profile:

Bayer Technology Services

(unpublished data, Marcus Kleine-Besten, Univ. Frankfurt)

Presentation Overview

- PK-Sim[®]'s Absorption Model
- > Application Examples
 - Example 1
 - Example 2

Example 3: Simulations in Children

Special Populations: Children

- Food & Drug Administration (FDA) and European authorities pressuring industry to perform clinical trials in paediatric patients
- Increase access to treatments for children and reduce offlabel, unlicensed treatment
- 50% of all drugs administered in hospitals are not properly licensed for use in children*
- Adverse drug reactions due to dosing errors and use in nonlabeled ages - from Dec 2001-2004, 820 serious ADRs occurred due to off label use with 130 being fatal (reported)**

* Conroy et al. Survey of unlicensed and off label drug use in paediatric wards in European countries. British Medical Journal 320:79-82. (2000)

** European Medicines Agency. Evidence of harm from off label or unlicensed medicines in children. EMEA/11207/04. (2004)

Scaling PBPK Models to Children

PBPK Modelling in children requires knowledge about the physiological and clearance differences relative to adults.

Scaling PBPK Models to Children

PBPK Modelling in children requires knowledge about the physiological and clearance differences relative to adults.

Scaling PBPK Models to Children

PBPK Modelling in children requires knowledge about the physiological and clearance differences relative to adults.

-> mechanistic model for clearance scaling

(Edginton et al., Clin. Pharmacokin. (in press 2006))

Simulating Oral Absorption in Children

Example: Oral administration of 10 mg/kg Ciprofloxacin in children

Bayer Technology Services

Simulating Drug Absorption: Summary

The rate and extent of oral drug absorption can be well simulated based on simple physico-chemical input parameters and a detailed description of the GI physiology

- Physiology-based simulations of drug absorption can be used
 to make predictions in the early development phase
 for hypothesis testing in later development stages
 to aid formulation development
 - > to study sub-populations (e.g. children, elderly, diseases)

The PK-Sim[®]-Team

- BTS-Systems Biology & Computational Solutions
 - Dr. Andrea Edginton
 - Karsten Höhn
 - Marcus Kleine-Besten
 - Dr. Jörg Lippert
 - Dr. Walter Schmitt
 - Michael Sevestre
 - Juri Solodenko
 - Wolfgang Weiss
 - Dr. Stefan Willmann
- Bayer-internal Cooperations
 - PK groups of BHC-Pharma (Dr. G. Ahr, Dr. W. Mück, Dr.H.Stass and colleagues)

- External Cooperations
 - Prof. Jenny Dressman, Uni Frankfurt
 - NIMBUS Biotechnology, Leipzig
 - Physiomics plc, UK

Bayer Technology Services

BACKUP SLIDES

Relevant Physiological Parameters: Summary

(Physiological data collected in collaboration with Prof. Dressman, Frankfurt, data for dogs and mice not shown)

Simulation of Intestinal Transit & Absorption

Scaling of Intrinsic Clearances

Validation of Clearance Scaling

Calculation of Partition Coefficients

Steady state organ/plasma partition coefficients

$$K_{tissue/water} = f_{lipid}^{tissue} * K_{lipid/water} + f_{protein}^{tissue} * K_{protein/water} + f_{water}^{tissue}$$

- K = Partition Coefficient (K_{protein/water} = HSA binding in case of plasma and calculated from Lipophilicity in all other cases)
- *f* = Volume fraction

Calculation of Distribution Dynamic

Permeability x Surface-Area Products

Volume of Distribution

Prediction of Partition Parameters

Validation

Brain/Plasma Partition-Coefficient

Keldenich et al., oral presentation at LogP2004 Symposium, Zürich (2004)

Organ/Plasma Partition Coefficients More Examples

Willmann et al., Poster presentation at LogP2004 Symposium, Zürich (2004)

Membrane Affinity

BAYER Bayer Technology Services

Membrane Affinity vs. logK_{ow}

Gobas et al., J. Pharm. Sci 77, 265 (1988)

Austin et al. , Fisons Pharmaceuticals I. logP Symposium, Lausanne 1995

General Model Results

Assumption: Dissolution is not the rate limiting step for absorption

General Model Results

*) W. Curatolo (Pfizer)
 Pharm. Sci. Technol. Today 1(9), 387-393 (1998)

Model Application: Assessment of EHC

Example: Model compound:
 weak base with pKa = 8.5,
 LogMA = 4,2, MW = 520,
 Solubility = 250 mg/L at pH 6.5,
 dose = 25 mg, subject to EHC

Model Application: Assessment of EHC

Population Simulation (N=25)

Model Application: Assessment of EHC

Plasma Concentration [mg/L] 2 9 10 11 12 Time [h]

Population Simulation (N=25)

