Characterizing and Forecasting Individual Weight Changes in Term Neonates

Mélanie Wilbaux PhD, S. Kasser MD, S. Wellmann MD, O. Lapaire MD, J.N. van den Anker MD, Marc Pfister MD

Pediatric Pharmacology & Pharmacometrics Division of Neonatology, Children's Hospital Basel (UKBB) Obstetrics and Gynecology, University Hospital Basel (USB)

> 25th PAGE Meeting 8 June 2016

Pediatrics – A Heterogeneous Population

Rodieux F. et al. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015

Pediatrics – A Heterogeneous Population

Body Composition

Rodieux F. et al. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015

Motivation

• Weight changes during the first week of life in term neonates:

- Excessive weight loss (>10%) has negative effects on development and increases the risk for serious clinical long term complications
- To further improve care of neonates by clinicians, nurses, midwifes, and mothers

- **Develop** a pharmacometric model characterizing weight changes in healthy term neonates exclusively breastfed
- Identify and quantify effects of maternal and neonatal factors
- Forecast individual weight changes up to 7 days of life
- Provide a user-friendly online monitoring tool to support neonatologists and other caregivers

Data

- Retrospective single-center study at University Hospital of Basel & University Children's Hospital Basel: maternal and neonatal data
- A total of 1335 healthy term neonates exclusively breastfed
- Longitudinal body weight data up to the first **7 days** of life
- Neonatal and maternal characteristics:

Characteristics	(%) Median [min - max]
Gender: Female / Male	50% / 50%
Delivery Mode: C-section / Vaginal Delivery	16% / 84%
Mother's Age (years)	32 [17 - 47]
Gestational Age (weeks)	40 [37 – 42]
Birth Weight (g)	3390 [2410 - 4610]

A total of 300 additional neonates for advanced evaluation

Development of a **pharmacometric model** by characterizing weight changes as a net balance between weight gain and weight loss rates

$$\frac{dWeight}{dt} = Kin - Kout \times Weight$$

Development of a **pharmacometric model** by characterizing weight changes as a net balance between weight gain and weight loss rates

$$\frac{dWeight}{dt} = Kin(t) - Kout(t) \times Weight$$

Kin and *Kout* describe using **time-dependent** mathematical functions

Methods – Model Development

$$\frac{dWeight}{dt} = Kin(t) - Kout(t) \times Weight$$

Methods – Modeling Method

Universitäts-Kinderspital beider Basel

- Non-linear mixed effects modeling:
 - NONMEM 7.3 (FOCEI algorithm)
- Model selection & evaluation:
 - Maximization of the likelihood
 - Standard error (SE)
 - Goodness-of-fit (GOF) plots
 - Simulation-based diagnostics (Visual predictive Check: VPC)
- Search for covariates:
 - Clinical relevance
 - Standard stepwise forward selection backward deletion approach

Results - Final Model

 $\frac{dWeight}{dt} = Kin(t) - Kout(t) \times Weight$ Weight(t = 0) = WT0

• *Kin*(*t*): Weight gain rate:

IF(t < TLag): Kin(t) = 0

 $IF(t \ge TLag)$: $Kin(t) = Kin_{Base} \times exp^{Kin_{PNA} \times t}$

 $TLag = 2 \ days$ for vaginal delivery $TLag = 3 \ days$ for C-section

$$Kout(t) = \frac{Koutmax \times t^{-H}}{T50^{-H} + t^{-H}} + Kout_{Base} \times exp^{Kout_{PNA} \times t}$$

Saturable Emax
with Hill coefficient Exponential

• *Kout*(*t*): Weight loss rate:

• **Gender** effect on WT0: $WT0_{Male} > WT0_{Female}$

- 5 covariate parameter relationships:
 - Positive **GA** effect on *WT*0

- 5 covariate parameter relationships:
 - Positive **GA** effect on *Kin_{Base}*

• Positive **mother age** effect on *WT*0:

-> Hypothesis: age-dependent changes in mother's glucose metabolism¹

beider Basel

- 5 covariate parameter relationships:
 - Negative mother age effect on Kin_{Base}

-> Hypothesis: decreased milk production with mother's age ²

² Nommsen-Rivers L.A. et al. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr 2010

Results - Goodness-of-fit Plots

Individual Predictions, Observations and Population Predictions vs. Time

Results - Goodness-of-fit Plots

CWRES vs. Population Predictions

CWRES vs. Time

Results - Visual Predictive Check

Advanced Validation: good predictive performance with accuracy (MAE=0.52%) and no bias (MPE=0.01%)

Results - Parameter Estimates

- Typical birth weight: WT0 = 3470 g
- Typical basal rate of weight gain: $Kin_{Base} = 41.51 \ g. \ day^{-1}$; IIV = 30%
- Maximum rate constant of weight loss (*Koutmax*) slowed by one-half at: $T50 = 1.9 \ days$
- Variability on *Kin* and *WT*0 explained by covariates
- Remaining non-explained variability on *Kout* (80%)

Forecast individual weight changes up to 7 days as soon as possible after birth

- Use of 3 initial weight observations during first 48 hours of life: birth weight + 2 weight measurements
- Apply model to forecast individual weight changes up to 7 days

Clinical Application - Evaluation

Forecast individual weight changes up to 7 days as soon as possible after birth

• Good graphical agreement:

- Predictive performance:
 - Good precision (MAE = 1.54 %)
 - No bias (MPE = -0.74 %)

Forecasted weight (g)

Observed vs. individual

forecasted weight values

NeoWeight Prediction Tool – Input

Rudraya

http://neoweight.mashframe.com/

Gestational Age		Sex		Delivery Mode		Mother's Age (years)	
39	0	Female	\checkmark	C-Section	~	35	
Birth Weight							
Observed Weight		Observed Weight Unit		Date and Time			
3660		g	\checkmark	05/01/2016 10:30 PM			i
Subsequent w	eight measuremer	nts					
Observed Weight		Observed Weight Unit		Date and Time			
3580		g	~	05/02/2016 9:00 AM			i
Observed Weight		Observed Weight Unit		Date and Time			
3400		g		05/03/2016 9:00 AM			i
			L Add weight	measurement 🗜			
			🗲 Foreca	st Weight 🖌			

NeoWeight Prediction Tool – Output

- First pharmacometric model characterizing weight changes in healthy term neonates exclusively breastfed
- User-friendly online NeoWeight Prediction tool allowing caregivers to:
 - Forecast and appropriately monitor individual weight changes
 - Personalize and optimize care of neonates

Outlooks – Model Expansion

Thank you !

