..............

Pharmacokinetic modeling of the plasma protein binding of

mycophenolic acid in renal transplant recipients

Reinier van Hest¹, Teun van Gelder^{1,2}, Arnold Vulto¹, Leslie Shaw³, Ron Mathot¹

¹Department of Hospital Pharmacy and ²Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands, ³Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, USA

Background:

- Mycophenolic acid (MPA) is the immunosuppressive active moiety of the prodrug mycophenolate mofetil (MMF), and is used to prevent acute rejection after organ transplantation.
- · A previous population pharmacokinetic analysis showed that impaired renal function and low plasma albumin level (Albm) were associated with an increased apparent oral clearance (CL) of total MPA.
- · Hypothesis: low Albm and accumulation of the glucuronid metabolite of MPA (MPAG) decreases MPA protein binding; CL is increased due to a higher unbound fraction (f.,).

Aim:

· Elucidate the mechanism of the effect of impaired renal function and low Albm on the pharmacokinetics of MMF by developing a population pharmacokinetic model for total and unbound MPA, as well as for total MPAG plasma concentrations.

Methods:

- · Retrospective pharmacokinetic data of unbound and total MPA, and total MPAG were obtained from 88 renal transplant recipients on day 11 and 140 after transplantation.
- · Data were analyzed using nonlinear mixed effects modeling (NONMEM).
- First, a basic model for total (C₀) and unbound (C₀) MPA was developed, where after the covariate effects of renal function and Albm were studied.

Results:

• 774 MPA C_t 479 MPA C_u, and 772 total MPAG data were best described by a 4 compartment model: central and peripheral compartments both for C_u and total MPAG with a link between the central compartments (figure 1). Total MPA concentrations were modeled using equation 1:

$$MPA C_{t} = MPA C_{u} + MPA C_{u} * \theta_{protein binding}$$
(Eq 1.)

where MPA $C_{_{u}}$ * $\theta_{protein binding}$ is the bound MPA concentration + $f_{_{U}}$ follows from equation 1 (equation 2): (Eq. 2)

$$f_{u} = \frac{MPAC_{u}}{MPAC_{t}} = \frac{MPAC_{u}}{MPAC_{u} + MPAC_{u} + \theta_{\text{protein binding}}} = \frac{1}{1 + \theta_{\text{protein binding}}}$$

· Albm, creatinine clearance (CrCl, as measure for renal function) and total MPAG concentrations were significantly correlated with $\theta_{\text{protein binding}}$ in the final model (p<0.001, equation 3, figure 2), whereas no significant correlations were found between these covariates and MPA, CL.

$$F_{u} = \frac{1}{1 + (64 * Albm * (CrCl/47)^{0.29} * (1 - 1.28 * (MPAG C_{t} - 0.13)))}$$
(Eq. 3)

· Parameter estimates of the basic and final model are presented in table 1; goodness-of-fit is shown in figure 3.

Conclusion:

- 1. The final model supports the hypothesis that impaired renal function and low Albm increase total MPA CL by affecting MPA binding to albumin.
- 2. The relationship between f, and MPAG provides evidence that MPAG
- displaces MPA from its albumin binding sites.

References:

Van Hest RM et al. Clin Pharmacokinet 2005;44:1083-96.

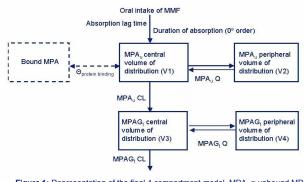
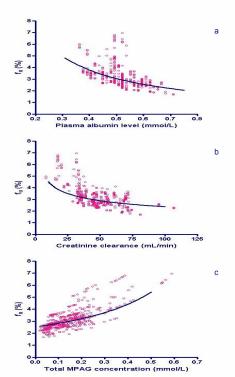



Figure 1: Representation of the final 4 compartment model. MPA_u = unbound MPA, MPAG, = total MPAG

Parameter	Basic model		Final model	
Objective function	-82		-1109	
PK parameter:				
T _{lag} (h)	0.09	(62)	0.10	(41)
Absorption duration (h)	0.66	(22)	0.88	(7)
MPA, V1 (L)	3700	(17)	2990) (27)
MPA, V2 (L)	3670	0 (22)	6240 (26)	
MPA ^T CL (L/h)	877	(8)	1070) (6)
MPA Q (L/h)	1030	(13)	1210) (13)
MPAĞ, V3 (L)	-		6.5	(23)
MPAG V4 (L)	-		9.1	(17)
MPAG, CL (L/h)			1.7	(3)
MPAG, Q (L/h)			11	(44)
P _{protein binding}	31	(4)	64	(3)
Between-patient variability:				
Absorption duration (%)	100	(29)	84	(39)
MPA, V1 (%)	86	(49)	91	(30)
MPA CL (%)	36	(38)	25	(32)
MPAĞ, CL (%)	-		27	(22)
Pprotein binding	22	(60)	12	(88)
Within-patient variability:				
MPA, CL (%)	27	(33)	20	(33)

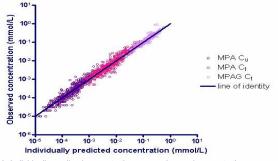


Figure 3: Individually prediced concentration versus observed concentration

