Analyzing Event History Data with nlme in S

Chyi-Hung Hsu, José PinheiroFei ChenBiostatistics, Novartis PharmaFair Isaac Co.

PAGE Meeting, Pamplona Spain, June 17, 2005

UNOVARTIS

Outline

- Motivation: pkNLME library
- Example: Analgesic data
- pkGroupedData extension of groupedData class
- Fitting compartment models to event history data with nlme
- Conclusions

Primary software for population PK analysis: NONMEM

- standalone Fortran software with comprehensive PK/PD library
- suited for event history data format
- limited capabilities for graphics (diagnostics, data, etc) and extensibility (e.g., bootstrap, likelihood profiling)
- requires different programming environments for additional capabilities (e.g., Xpose, WFN, PDx-Pop)

New numerical methods for fitting NLME models available – difficult to implement in NONMEM

Motivation (cont.)

➤ S language (and its dialects, SPLUS and R)

- integrated, flexible, extensible programming environment for statistical graphics and modeling
- efficient calculations in use of vectorized form
- less suitable for recursive calculations
- Methods for mixed-effects models is available in NLME library (Pinheiro and Bates, 2000)
 - groupedData class
 - limited capabilities for PK modeling (vectorized form)

Example: PK clinical trial with analgesic drug

>Clinical trial with 91 patients submitted to four different dose regimens of an analgesic drug: 50 mg bid,100 mg bid, 200 mg bid, and 400 mg od -22 to 24 patients per dose group

Blood concentrations of drug measured on first day non-steady-state and after four weeks in the trial steady-state: six concentration measurements taken over about six hours on each occasion

Data available on five demographic variables: sex, race, age, weight, and height

➢PK model: two-compartment model with zero-order absorption

Main objective: determine impact of demographic covariates on PK parameters

➢For confidentiality, data presented was simulated using same design and PK model as in original clinical trial

Analgesic example (cont.)

ANALGESIC STUDY 01 NONMEM INPUT FILE (SBJ WITH MISSING WEIGHT, RACE IGNORED) ID, EVID, AMT, TIME, SEX, RACE, AGE, WGT, HT, SS, II, DV

1.0,1.0,400.00000,9.25000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,0.0,00000
1.0,0.0,0.0,9.75000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,7.51500
1.0,0.0,0.0,11.25000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,12.15100
1.0,0.0,0.0,12.23300,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,2.23100
1.0,0.0,0.0,13.25000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,1.99020
1.0,0.0,0.0,15.25000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,0.54854
1.0,1.0,400 728.63000,1.0,1.0,61.00000,72.50000,175.00000,1.0,24.00000,0.00000
1.0,0.0,0.0,752.33000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,0.18974
1.0,1.0,400 752.63000,1.0,1.0,61.00000,72.50000,175.00000,0.0,0.0,0.0,0.0

A pkGroupedData class

groupedData class

➢ included in NLME library

Extended data frame to represent data with one or more nested levels of grouping (e.g. longitudinal data, repeated measures)

> available methods for displaying, summarizing, and modeling

pkGroupedData class

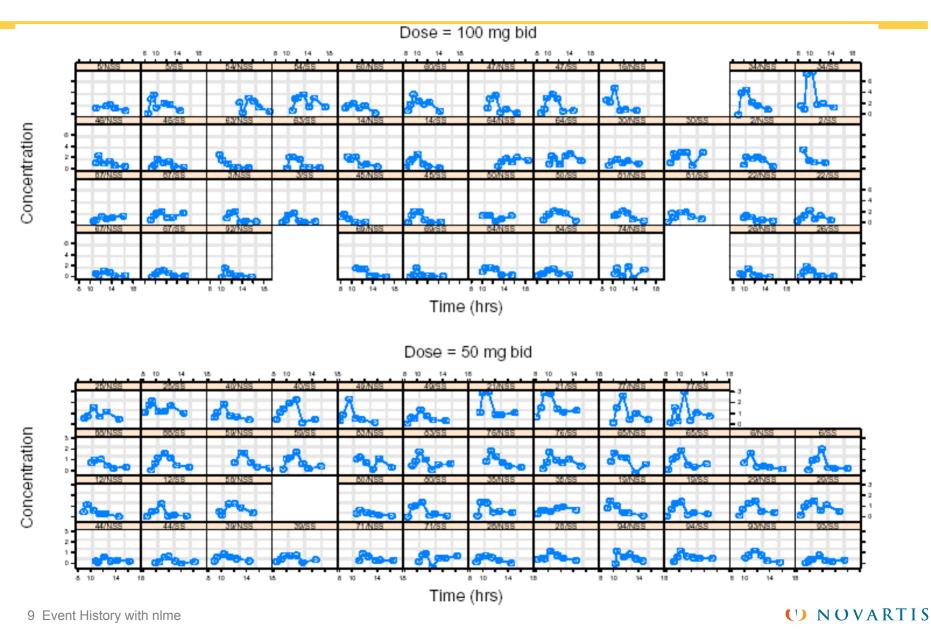
- included in pkNLME library
- Constructor function to read NONMEM data files into S objects
- inherits all groupedData methods
- specialized information stored with the object for later

plotting and modeling (e.g., role of special variables like SS, II, ...)

U NOVARTIS

Analgesic data as pkGroupedData

- > ## reading data from NONMEM file and creating object
- > Analg <- pkGroupedData(DV ~ TIME | ID, "Analgesic.dat")
- > Analg[1:10,]


PK Grouped Data: DV ~ TIME | ID

	ID	EVID	AMT	TIME	SEX	RACE	AGE	WGT	ΗT	SS	II	DV
1	1	1	400	9.250	1	1	61	72.5	175	0	0	0.00000
2	1	0	0	9.750	1	1	61	72.5	175	0	0	7.51500
3	1	0	0	10.300	1	1	61	72.5	175	0	0	7.07800
4	1	0	0	11.250	1	1	61	72.5	175	0	0	12.15100
5	1	0	0	12.233	1	1	61	72.5	175	0	0	2.23100
6	1	0	0	13.250	1	1	61	72.5	175	0	0	1.99020
7	1	0	0	15.250	1	1	61	72.5	175	0	0	0.54854
8	1	1	400	728.630	1	1	61	72.5	175	1	24	0.00000
9	1	0	0	752.330	1	1	61	72.5	175	0	0	0.18974
10	1	1	400	752.630	1	1	61	72.5	175	0	0	0.00000

UNOVARTIS

8 Event History with nlme

Plots of Analgesic data

Fitting Population PK models with nlme

- > Current capabilities: small number of functions implementing
 - single-dose first-order one-compartment: SSfol self-starting model (vectorized form)
 - multiple-dose first-order one-compartment: quinModel wrapper to recursive function written in C
 - multiple-dose bolus injection one-compartment: phenoModel wrapper to recursive function written in C

Once PK model is fitted, have access to all capabilities in nlme: e.g., diagnostic plots, model building and updating, confidence intervals, tests, predictions methods

pkNLME: extending PK modeling capabilities in nlme

Objective: allow population PK modeling capabilities in nlme similar to NONMEM

> Allow use of history data format as in NONMEM, for modeling and internal data representation (pkGroupedData)

Library of simple compartment models using recursive calculations consistent with event history format – wrappers to C functions

Embedded in S environment, benefiting from existing syntax, libraries, and other capabilities in language

Model functions: oneComp, twoComp and threeComp

- Event-driven updating
- Similar input requirements
 - ID, EVID, TIME, AMT, RATE, SS, II, ADDL, DV, ...
- > Allowing three types of administration, specified via argument TYPE
- > Allowing multiple routes of administrations in the same data

Modeling Analgesic data

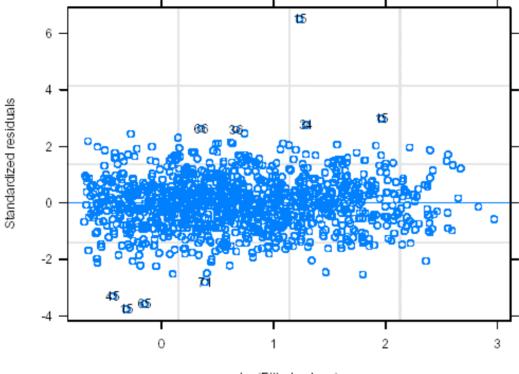
No built-in function available in NLME for two-compartment zero-rdero input model; can use twoComp2 function (version of twoComp with desired parameterization

```
> fm1Analg <- nlme(DV ~ twoComp2(lV, lCl, lV2, lQ, TIME = TIME, EVID = EVID,
+
     AMT = AMT, RATE = AMT/2, SS = SS, II = II, ID = ID, TYPE = 2),
     data=Analg, fixed = 1C1 + 1V + 1Q + 1V2 \sim 1, random = pdDiag(1C1 + 1V \sim 1),
+
     weights = varPower(fixed = 1), groups = \sim ID, start=c(2, 3, 2, 3),
+
     na.action = na.include, naPattern = ~ EVID == 0)
+
> fmlAnalq
 Log-likelihood: -1227.8
 Fixed: 1Cl + 1V + 10 + 1V2 ~ 1
    1C1
            lV
                   10
                         1V2
```

2.3477 3.0306 2.0432 3.0753

13 Event History with nlme

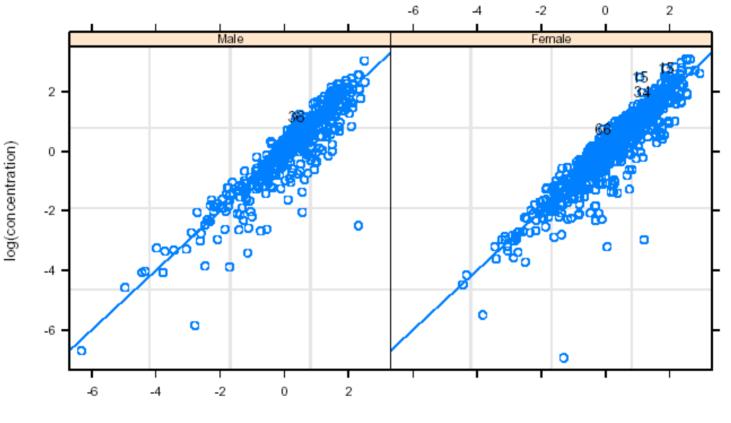
Assessing the quality of Analgesic fit


> plot(fm1Analg, id = 0.01) 15 6 4 Standardized residuals 15 2 ο O 800 o 0 80 o 0 0 00 -2 o n 15 10 5 0

Fitted values

Assessing the quality of Analgesic fit (cont.)

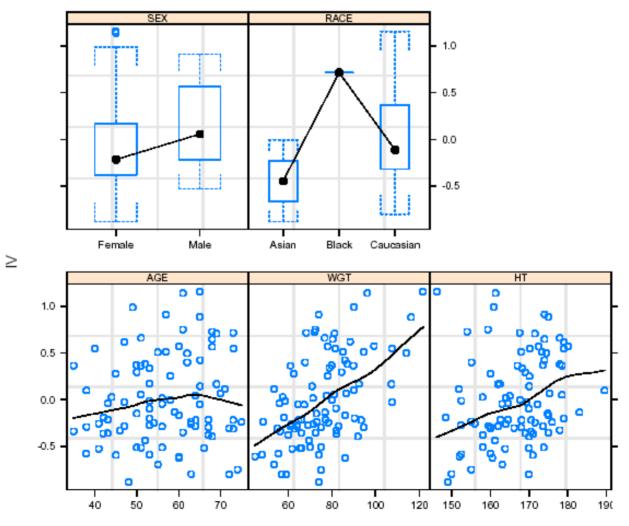
> plot(fm1Analg, form = resid(., type = "p") \sim log(fitted(.) + 0.5), id = 0.01)



log(Fitted values)

Assessing the quality of Analgesic fit (cont.)

> plot(fmlAnalg, log(DV) \sim log(fitted(.)) | SEX, abline = c(0,1), id = 0.01, + xlab = "log(Fitted values)", ylab = "log(concentration)")



log(Fitted values)

Incorporating covariates in Analgesic model

> plot(ranef(fm1Analg, aug = T), form = $1V \sim AGE + WGT + HT + SEX + RACE$)

17 Event History with nlme

() NOVARTIS

Incorporating covariates in Analgesic model (cont.)

> fm2An	alg <-	upd	<mark>ate</mark> (fmlAr	alg, fixed	d = list(lCl	+ lQ + lV2	2 ~ 1, lV ~	~ I(WGT/75)),		
+ start = c(fmlAnalg[c(1,3,4,2)], 0))										
> anova(fm1Analg, fm2Analg)										
	Model	df	AIC	BIC	logLik	Test	L.Ratio	p-value		
fmlAnal	g 1	7	2469.6	2504.9	-1227.8					
fm2Anal	a 2	8	2432.7	2473.0	-1208.4	1 vs 2	38.86	<.0001		

Conclusions

- S provides an integrated environment for statistical modeling software development
- NLME library in S includes comprehensive set of tools for fitting, analyzing, and exploring mixed-effects models
- For NONMEM users, event history format is main difficulty in using nlme for PK/PD modeling
- pkNLME project is aimed at addressing these issues and making nlme a viable alternative to NONMEM within S programming environment
- New numerical methods in S can also be incorporated