

PAGE 2005 - Pamplona, Spain

Challenges in modelling the pharmacokinetics of isoniazid in South African tuberculosis patients

<u>Justin J Wilkins</u>¹, Grant Langdon¹, Helen McIlleron¹, Goonaseelan Pillai², Peter J Smith¹ and Ulrika S H Simonsson³

- (1) Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
- (2) Modelling & Simulation, Clinical Development & Medical Affairs, Novartis Pharmaceuticals AG, Basel, Switzerland
- (3) Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Sweden

Isoniazid (INH)

Key part of first-line tuberculosis chemotherapy Rapidly and completely absorbed from the intestine Subject to first-pass effect Substantial presystemic metabolism occurs in intestinal mucosal cells Subject to metabolic polymorphism - trimodal

Patient Data

266 pulmonary tuberculosis (PTB) patients on first-line chemotherapy On treatment for 8-10 days prior to start of study 200-400 mg p.o. daily Samples for PK analysis were taken over between 1 and 6 weeks

Representative Individual Profiles

23

Modelling Procedure 2-compartment model with firstorder absorption & elimination

Model assessment criteria
ΔΟFV
GOF plots
Scientific plausibility
Precision & accuracy

 Modelled using dual absorption compartments - fast and slow, characterized by absorption halflives HL_{a,fast} and HL_{a,slow}

$$F_{slow} = 1 - F_{fast}$$

HLFAST = THETA(3)HLSLOW = THETA(4) + HLA1

Other Aspects

IOV/IIV characterization was a key objective
 27 dosing occasions, IOV on 2 parameters - 56 ETA parameters needed

 $\overline{(CL/F)_{i}} = \overline{\theta_{CL/F}} \cdot \exp(\eta_{i}^{CL/F} + \kappa_{ij}^{CL/F})$

Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. *J Pharmacokinet Biopharm*. 1993 Dec;**21**(6):735-50.

Other Aspects

Acetylator phenotype

Fast, intermediate and slow
 Data did not allow identification of intermediate group (indistinguishable from fast group)

\$MIX NSPOP = 2 P(1) = THETA(8)P(2) = 1 - THETA(8)

Other Aspects

Enterohepatic circulation

 Several models tested to account for enterohepatic circulation (EHC)
 EHC models were unable to produce either a substantial ΔOFV or a successful covariance step
 No literature evidence

Covariate relations

GAM as implemented in Xpose used to identify potential covariate relations
 Screened using stepwise covariate modelling (SCM) method
 TV (CL/F) = θ_{CL/F} · [1+θ_{WT} · (WT - WT_{med})]

 $TV(V/F) = \theta_{V/F} + \theta_{SEX} \cdot SEX$

The Model

Goodness-of-Fit

Goodness-of-Fit

Parameter Estimates

Parameter	Mean	% RSE	IIV (IOV)
Oral clearance $(CL_{fast}/F, L.h^{-1})$	10.4	2.90	0.156
Oral clearance $(CL_{slow}/F, L.h^{-1})$	4.42	3.48	(0.0327)
Ratio of fast acetylators to slow acetylators (P_{CL})	0.225	14.9	12.20
Half-life of absorption for fast compartment $(HL_{a,fast}, h)$	0.518	4.15	0.551 (0.351)
Half-life of absorption for slow compartment $(HL_{a,slow}, h)$	5.78	5.55	1.09
Dose fraction, fast cpt (F_{fast})	0.526	3.73	
Apparent volume of distribution, central compartment $(V_1/F, L)$	6.86	9.31	0.268
Apparent volume of distribution, peripheral compartment $(V_2/F, L)$	13.0	Fixed	
Intercompartmental rate constant (k_{12} , h^{-1})	2.43	12.2	allere A
Intercompartmental rate constant (k_{21} , h^{-1})	1.75	8.51	1-1-1-1
Residual Variability			ender af s
Constant coefficient of variability	0.191	3.03	

The Final Model

Parsimonious Model for INH PK

Acknowledgments

Aspects of this project were funded by the Medical Research Council of South Africa.

Grateful thanks to Jean van Dyk, Afia Fredericks and the patients and staff of D P Marais SANTA Centre and Brewelskloof Hospital for the input, support and cooperation they have lent this work.

Complex Absorption

Adapted from the multiple-dose enterohepatic circulation model suggested by Luann Phillips (after Stuart Beal). NMusers, 11 June 2002. [http://www.cognigencorp.com/nonmem/nm/98may312002.html]

F2 = THETA(5) ; F for fast comp F3 = (1-F2) ; F for slow comp ... HLA1 = THETA(3)*EXP(BSV + BOV) ; abs half-life of fast abs comp HLA2 = THETA(4)*EXP(ETA(4)) + HLA1 ; abs half-life of slow abs comp K21 = 0.693/HLA1 K31 = 0.693/HLA2

. . .

Modelling Issues: IOV

\$OMEGA BLOCK(1) .04
\$OMEGA BLOCK(1) SAME
\$OMEGA BLOCK(1) SAME

....

\$PK

. . .

BSV = ETA(1) BOV = ETA(5)IF (OCC.EQ.2) BOV = ETA(6) IF (OCC.EQ.3) BOV = ETA(7) IF (OCC.EQ.4) BOV = ETA(8) ... HLA1 = THETA(3) *EXP(BSV + BOV)

Modelling Issues: Acetylator Phenotype

\$MIX NSPOP = 2 P(1) = THETA(8) P(2) = 1 - THETA(8) ... Q1 = 0 Q2 = 0 IF (MIXNUM.EQ.1) Q1 = 1 IF (MIXNUM.EQ.2) Q2 = 1

CL1 = THETA(1)CL2 = THETA(9)

TVCL = ((CL1*Q1) + (CL2*Q2)) * (1+ THETA(11)*(WT-50)) CL = TVCL*EXP(BSV2 + BOV2)

\$PROB INH FINAL \$DATA inh_dual_jun04.csv IGNORE=@ \$INPUT ID IDNO=DROP OCCO=DROP DAY=DROP RATE=DROP TIME TT=DROP DV MDV AMT CMT EVID AGE SEX WT HT=DROP BMI=DROP RACE=DROP SMOK ALC PKG=DROP HIV HB=DROP HCT RBC=DROP MCV=DROP WBC=DROP AP=DROP ALT=DROP AST CRT=DROP TBIL=DROP UREA=DROP RIFP=DROP PZAP FDC DS=DROP LOC OCCD=DROP CLCR BSA=DROP OCC DRUG

\$SUBROUTINE ADVAN6 TRANS1 TOL=5

\$MODEL COMP = (CENT)
COMP = (ABS1); fast abs comp
COMP = (ABS2); slow abs comp
COMP = (PERI)

\$THETA (0, 4.6) ;1 CL1 \$THETA (0, 21.2) ;2 V1 \$THETA (0, 0.3) ;3 HLA1 \$THETA (0, 6.1) ;4 HLA2 \$THETA (0, .6, 1) ;5 F-fast STHETA (O FIX) ;6 ADD error \$THETA (0, 0.22) ;7 CCV error \$THETA (0, 0.23, 1) ;8 P1 \$THETA (0, 11) ;9 CL2 ;10 SEX on V1 STHETA 0.01 STHETA 0.01 ;11 WT on CL STHETA 13 FIX :12 V2 \$THETA (0, 2.5) ;13 K14 \$THETA (0, 1.8) ;14 K41

\$OMEGA .2 .3 .5 1.35

\$OMEGA BLOCK(1) .04 \$OMEGA BLOCK(1) SAME \$OMEGA BLOCK(1) SAME

• • •

. . .

<pre> < many \$OMEGA BLOCK(1) records omitted ></pre>	<pre> < many \$ETA statements omitted ></pre>
\$OMEGA BLOCK(1) SAME \$OMEGA BLOCK(1) SAME	IF (OCC.EQ.26) BOV = ETA(30) IF (OCC.EQ.27) BOV = ETA(31)
\$SIGMA 1 FIX	BSV2 = ETA(3)
\$ABBREVIATED DERIV2=NO	BOV2 = ETA(32) IF (OCC.EQ.2) BOV2 = ETA(33) IF (OCC.EQ.3) BOV2 = ETA(34)
SMIX $NSPOP = 2$ $P(1) = THETA(8)$	<pre> < many \$ETA statements omitted ></pre>
P(2) = 1 - THETA(8)	IF (OCC.EQ.26) $BOV2 = ETA(57)$ IF (OCC.EQ.27) $BOV2 = ETA(58)$
SPK	Q1 = 0
BOV = ETA(1) BOV = ETA(5)	Q2 – 0
IF (OCC.EQ.2) $BOV = ETA(6)$ IF (OCC.EQ.3) $BOV = ETA(7)$ IF (OCC.EO.4) $BOV = ETA(8)$	IF (MIXNUM.EQ.1) Q1 = 1 IF (MIXNUM.EQ.2) Q2 = 1
$ \begin{array}{l} \text{IF} (\text{OCC.EQ.5}) & \text{BOV} = \text{ETA}(9) \\ \text{IF} (\text{OCC.EQ.6}) & \text{BOV} = \text{ETA}(10) \end{array} $	MXN=0 IF (MIXNUM.EQ.1) MXN=1
	IF (MIXNUM.EQ.2) MXN=2

•••							
CL1 CL2	=	THETA(1) THETA(9)			i i	CL1 CL2	
TVCL CL	=	((CL1*Q1) + (CL2*Q2) (1+ THETA(11)*(WT-50 TVCL*EXP(BSV+BOV))))))	*			
TVV1 V1	=	THETA(2) + THETA(10) TVV1*EXP(ETA(2))	* (SΕΣ	ζ ;	; V1 ; V1	
; abs HLA1 ; abs HLA2 K21 K31	5 h = 5 h = = =	half-life of fast abs THETA(3)*EXP(BSV2+BC half-life of slow abs THETA(4)*EXP(ETA(4)) 0.693/HLA1 0.693/HLA2	s ()∨2 s (+1	cor 2) cor HL <i>P</i>	np Np Al		
V2 K14 K41	= =	THETA (12) THETA (13) THETA (14)					
F2 F3	=	THETA(5) (1-F2)	; ;	F F	for for	fast slow	abs comp
S1 K10	=	V1 CL/V1					

•••

\$ERROR

AA1	=	A(1)	
AA2	=	A(2)	
AA3	=	A(3)	
AA4	=	A(4)	
CP	=	A(1)/V1	
IPRED	=	A(1)/S1+0.00001	
IRES	=	DV-IPRED	
W	=	SQRT(THETA(6) **2 +	
		THETA(7)**2*IPRED*IPRED)	
IWRES	=	IRES/W	
Y	=	IPRED+W*EPS(1)	
\$DES			
DADT (1	L)	= K21*A(2) + K31*A(3) - K10*A(1)	_

```
K14*A(1) + K41*A(4)
DADT(2) = -K21*A(2)
```

```
DADT(3) = -K31*A(3)
DADT(4) = K14*A(1) - K41*A(4)
```

• • •

\$EST POSTHOC NOABORT PRINT=10 MAXEVAL=9999 MSFO=run526.msf SIGDIG=3

\$COV PRINT=E MATRIX=S

\$TABLE ID TIME IPRED IWRES ETA1 ETA2 ETA3 ETA4 ETA5 ETA6 ETA33 OCC AA1 AA2 AA3 AA4 NOPRINT ONEHEADER FILE=sdtab526

\$TABLE ID CL V1 HLA1 HLA2 F2 F3 K21 K31 K10
K14 K41 V2 MXN
NOPRINT ONEHEADER FILE=patab526

\$TABLE ID AGE WT HCT AST NOPRINT ONEHEADER FILE=cotab526

\$TABLE ID SEX SMOK ALC HIV PZAP FDC LOC NOPRINT ONEHEADER FILE=catab526

\$TABLE ID AUC CP NOPRINT ONEHEADER FILE=run526.fit