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Background
In clinical trial simulation (CTS), uncertainty about input 
parameters, e.g., population PKPD parameters, will influence 
the precision and accuracy of the simulation output, e.g., trial
power.

However, the impact of uncertainty about single input 
parameters on the quality of the prediction provided by CTS 
may vary considerably. In this sense, ‘important’ parameters, 
required to be fed into simulations with a high degree of 
precision to allow reliable CTS outcomes can be distinguished 
from ‘unimportant’ parameters, uncertainty about which has 
no serious consequences for the accuracy and precision of the 
predicted variable.

If such discrimination is done prior to trial simulations, 
research resources expended to inform CTS can be focused on 
the ‘important’ model parameters.



Suggested Method

Given a non-linear model, the importance of input parameters 
for the precision of a CTS outcome variable can be 
evaluated with a 3-step procedure:

1. Establish a full Bayesian predictive model of the CTS 
outcome

2. Simulate the model at varying input parameter settings 
using principles of effective experimental design

3. Perform variance-based sensitivity analysis to explore the 
consequences for CTS outcome precision of uncertainty 
about individual input parameters



Simulated Example

The approach is exemplified by application to the design of 
a completely randomized, placebo-controlled parallel-
groups efficacy trial, in which the effect of the study drug 
is measured as a continuous outcome variable during 
steady-state conditions. It is assumed that previous 
learning trials have provided information about the 
population distribution of clearance and of parameters of a 
sigmoidal Emax model linking steady state concentration 
with treatment outcome. To focus on principles, we also 
assume that the study is performed in a specific stratum of 
the target population, where no known predictors of PKPD 
characteristics exist, and that adherence to the trial 
protocol is perfect. The submodels used for simulations are 
briefly described below.



Placebo Outcome Model

RP = P + e
Rp - change of the outcome variable from baseline
P - placebo response
e - error term

P ~ N (µP, σP
2) and e ~ N (0, σe

2),

The distribution of P in the population is assumed to be normal with mean µP and 
variance σP

2. The normal error term e and its variance σe
2 represent the deviation of 

the measured response from the subject-specific placebo response P due to
intraindividual variation, measurement error and model misspecification. The 
summands are assumed to be independent of each other. Expectation and variance of 
the total measured response to placebo given µP, σP

2 and σe
2 are thus µRP = E (RP | µP) 

= µP, and σRP
2 = Var (RP | σP

2, σe
2) = σP

2 + σe
2.



Verum Outcome Model

RA = P + S + e
RA - change of the outcome variable from baseline
S - Specific drug effect
The distributions of P and S including their parameters µP, σP

2 and σe
2 are assumed to 

be the same as those assumed for the placebo group, as characterized above.

S = Emax / [1 + (EC50 × Cl / D)G]
Emax - Maximum attainable effect
EC50 - Concentration producing 50% of Emax
G - Hill factor
Cl - Clearance

D - Dose rate (Bioavailability is assumed to be 1.)



Population PKPD Model
Emax, EC50, G and Cl are assumed to be independent, positive variables with log-
normal population distributions:

θPD ~ N (µPD, diag(σPD
2))

θPD = [log(Emax), log(EC50), log(G), log(Cl)]T

µPD = (µlogEmax, µlogEC50, µlogG, µlogCl)T

σPD
2 = (σlogEmax

2, σlogEC50
2, σlogG

2, σlogCl
2)T

Population mean and variance of S are thus given by 
µS = E(S|µPD, σPD

2) = ∫{Emax/[1+(EC50×Cl/D)G]} × N(θPD| µPD, diag(σPD
2)) dθPD and

σS
2 = V(S|µPD, σPD

2) = ∫{Emax/[1+(EC50×Cl/D)G]-µS}2 × N(θPD|µPD, diag(σPD
2)) dθPD.

Given µS and σS
2, expectation and variance of RA, i.e., µRA and σRA

2, are now
µRA = E (RA | µP, µS) = µP + µS and σRA

2 = Var (RA | σP
2, σS

2, σe
2) = σP

2 + σS
2 + σe

2,
since independence of P, S and e is assumed.



Approximation of Trial Power

Power = 1 – Φ (Z1-α/2 + (CWD - µ∆)/σ∆))
Φ - Cumulative standard normal distribution function 
Z1-α/2 - (1-α/2)-percentile (α set to 0.01 Z1-α /2 = 2.5758)
CWD - Clinically worthwhile difference
µ∆ = µRA - µRP = µS

σ∆
2 = σRP

2/150 + σRA
2/150 = (2σP

2 + σS
2 + 2σe

2) / 150 
(for a sample size of 150 in both treatment groups)



Uncertainty Model
In the present model, independent normal and inverse Gamma distributions are used for 
modeling uncertainty about population means and variances µPD, σPD

2, σP
2, and σe

2.
Indexing the components of σPD

2 and µPD with j (j = log(Emax), log(EC50), log(G), or 
log(Cl)), this may be expressed as:

σj
2 ~ Inv-Gamma (nj,s/2, nj,s × sj

2/2) for all j
σP

2 ~ Inv-Gamma (nP/2, nP × sP
2/2)

σe
2 ~ Inv-Gamma (ne/2, ne × se

2/2)
µj|σj

2 ~ N (mj, σj
2/nj,m) for all j

Interpretation: The locations of the uncertainty distributions for the components of µPD are 
described by the hyperparameters mj, while their scales are tied to the corresponding σj

2.
Given σj

2, the uncertainty about the µj is also determined by the hyperparameters nj,m, 
which may be envisaged as the number of subjects previously observed to estimate µj. If 
the information about µj is actually derived on a previous sample of nj,m observations of j,
mj would typically be chosen to equal the maximum-likelihood estimate of µj. In analogy, 
the hyperparameters sj, sP and se may be previous estimates of the corresponding 
population variances derived from nj,s, nP and ne observations, respectively.

Thus, the hyperparameters nj,m, nj,s, nP and ne, generically referred to as n in the 
following, quantify the amount of existing information about the respective population
parameters.



Uncertainty about Power
As a consequence of power predictions being based on uncertain means and standard 
deviations of individual PKPD parameters in the population, power itself is uncertain and 
may be represented by a probability distribution. The spread of this uncertainty function is
an indicator of uncertainty about, or precision of, predicted power. It is determined by all
input constants m , s and n , and can be approximated by simulation.

Spread is operationalized by the standard deviation, SDPower, and 5% quantile. The 5%
quantile, Q5Power, provides the power estimate above which true trial power falls with a 
probability of 95%.

Mean predicted power, Mpower, is used as a point predictor of power in the presence of 
parameter uncertainty.



Simulation of Predictive Distributions
In the present study, four scenarios, referred to as 10&10, 10&40, 40&10 and 40&40, 
were simulated with hyperparameters (input variables) set to the following values:

2 or 1000.3852530.8420814.530964040&40

2 or 1000.0997510.9113164.600204040&10

2 or 1000.3852530.8420814.530961010&40

2 or 1000.0997510.9113164.600201010&10

n
slogEmax, slogEC50,

slogG, slogCl
mlogG, mlogCl

mlogEmax, 
mlogEC50

sP, seScenario

The first number in the labels of the scenarios provides the values chosen for both sP and 
se. The values selected for mlogEmax, mlogEC50, mlogG, mlogCl, slogEmax, slogEC50, slogG, slogCl are 
expected first and second moments for log(Emax), log(EC50), log(G) and log(Cl), if the 
true means of Emax, EC50, G and Cl were 100, 100, 2.5 and 2.5, respectively, and if the 
true coefficients of variation of these four parameters were 10% (scenarios 10&10 and 
40&10) and 40% (scenarios 10&40 and 40&40). Values for n were set according to the 
sensitivity analysis procedure described below.

For each scenario and settings of the n (2 or 100), 5000 samples of µlogEmax, σlogEmax
2, 

µlogEC50, σlogEC50
2, µlogG, σlogG

2, µlogCl, σlogCl
2, σP

2, and σe
2 were drawn from their probability 

distribution, corresponding power approximations were obtained, and SDPower, Q5Power and
MPower were computed. 



Sensitivity Analysis
To evaluate the differential effects of the 10 hyperparameters nj,m, nj,s, nP and ne (n*) on
the precision and expectation of predicted power, we used a 210 factorial design with the 
different n set at either 2 (“little existing information”) or 100 (“much existing
information”). For each factor combination, 2 repetitions were simulated. Moreover, the 
whole experiment was performed for three different dose rates, i.e., D = 144, D = 250 and 
D = 435. In a typical subject with Emax = EC50 = 100 and G = Cl = 2.5 (that is, a subject 
whose PKPD parameters correspond to θPD = m and P = e = 0), these dose rates would 
generate responses of 20%, 50% and 80% of Emax. Values for CWD were selected to 
provide similar ranges of expected power in the order of 99% (based on a model with 
certainty about parameters) for all doses and scenarios.

The impact of the 10 input variables n on the precision of predicted power (expressed by
SDPower and Q5Power) was studied separately for the 3 dose rates and 4 scenarios. 
Conventional analysis of variance was used to model the variance components of main 
effects and interactions. Thus, in ANOVA terminology, SDPower or Q5Power were univariate
response variables, and the 10 different n served as factors used to explain the variation 
of SDPower or Q5Power. For each main and interaction effect, the corresponding sum of 
squares was expressed as a percentage of the total sum of squares (eta-squared).
Moreover, a total sensitivity index quantifying the importance for SDPower or Q5Power of each 
of the 10 input variables n was obtained by adding all eta-squared statistics for main and 
interaction effects involving that variable.



Results (1)

Descriptive measures of uncertainty about predicted power 
were first obtained with all n set at either 2 or 100 (Table 
below). This confirmed that high overall uncertainty 
associated with PKPD population parameters (all n set to
2), resulted in large values for SDPower (between 38.8% 
and 43.5%) and small values for Q5Power (between 0.00% 
and 0.92%) for all scenarios and dose rates. In contrast, 
with low uncertainty about these parameters (all n set to
100), maximal SDPower was 8.53% and minimal Q5Power was 
77.2%. Except for scenario 10&40, low levels of 
uncertainty were associated with values of SDPower below 
5% and of Q5Power above 85%.



Results (2)

With the n set to infinity, that is, when assuming certainty 
about input parameters, power predictions with the 
current model would have exceeded 95% for all scenarios 
and dose rates. As a consequence, and because power is 
restricted to values between 0 and 1, wider prediction 
intervals associated with high levels of uncertainty about
parameters (n = 2) shifted the expected value for 
predicted power, MPower, towards values closer to zero 
(between 32.1% and 50.1%). The median of predicted 
power (not shown) ranged between 3.9% and 47.2% for 
the different scenarios and dose rates.



Simulation Results
Scenario Dose Rate CWD na SDPower (%) Q5Power (%) MPower (%) 

10&10 144 13 2 42.9 0.13 48.6 
   100 2.41 92.8 97.7 

 250 42 2 42.8 0.00 39.5 
   100 4.40 87.7 96.6 

 435 71 2 41.0 0.00 32.1 
   100 4.18 88.6 96.9 

10&40 144 20 2 43.5 0.01 47.0 
   100 8.53 77.2 94.5 

 250 40 2 42.8 0.00 39.2 
   100 7.37 82.6 96.4 

 435 60 2 41.2 0.00 32.2 
   100 7.61 82.8 96.4 

40&10 144 -10 2 40.1 0.92 50.1 
   100 1.20 95.8 98.1 

 250 20 2 39.9 0.64 42.5 
   100 1.61 94.4 97.6 

 435 48 2 39.6 0.18 38.1 
   100 1.22 95.9 98.3 

40&40 144 0 2 40.4 0.82 43.6 
   100 2.11 93.7 97.8 

 250 20 2 39.9 0.51 37.7 
   100 1.53 95.9 98.8 

 435 40 2 38.8 0.05 32.4 
   100 1.47 96.2 99.0 
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Sensitivity of standard deviation of trial power (SDPower) to uncertainty about input
parameters (quantified by n ). Large values of sensitivity indices indicate an
important influence on SDPower and corresponding parameters need to be input 
with high precision into CTS to allow reliable power predictions. 
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Sensitivity of standard deviation of the 5% quantile of predicted power to 
uncertainty about input parameters (quantified by n ). Large values of sensitivity 
indices indicate an important influence, and corresponding parameters need to be 
input with high precision into CTS to allow reliable power predictions. 



Conclusions

Due to non-linearity and non-normality of CTS models, use
of point estimates of PKPD parameters may result in
biased CTS predictions.

Full Bayesian modeling makes uncertainties about PKPD 
parameters explicit and incorporates uncertainty in CTS
models, thus allowing more realistic outcome predictions.

Variance-based sensitivity analysis may be used to identify
PKPD population parameters that, for reliable CTS-based 
predictions, need to be fed into simulations with a high
degree of precision.
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